{"title":"UXO and environmental risk factors impacting EOD operations in German waters**","authors":"Torsten Frey","doi":"10.1002/prep.202300206","DOIUrl":null,"url":null,"abstract":"This article presents risk factors that are associated with the handling of unexploded ordnance (UXO) during explosive ordnance disposal (EOD) operations in German waters. The construction of offshore wind parks and the German immediate action program are expected to increase the number of EOD operations. Existing literature and guidelines do not offer a structured and reproducible framework for assessing EOD risk. To fill this gap, a network of EOD risk factors was developed by means of a literature review and validation via expert consultation. The study was scoped to “personnel and equipment at the EOD location” as the risk receptor and “undesired detonation” as the undesired event under investigation. Factors are subdivided into UXO factors that depend on the object that should be handled and factors that describe the object's surrounding environment. While the former can be researched by an EOD expert, the latter must be measured on site or acquired from a model. Each of these factors contributes to risk, some directly and others indirectly via other factors. The complexity of the resulting network, with its 33 factors, demonstrates the need for a reliable and reproducible model to quantify EOD risk. Its purpose is not to replace EOD experts but to aid them in their decision-making process. Such a tool can provide valuable support for the high-cost and high-risk EOD operations.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"40 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents risk factors that are associated with the handling of unexploded ordnance (UXO) during explosive ordnance disposal (EOD) operations in German waters. The construction of offshore wind parks and the German immediate action program are expected to increase the number of EOD operations. Existing literature and guidelines do not offer a structured and reproducible framework for assessing EOD risk. To fill this gap, a network of EOD risk factors was developed by means of a literature review and validation via expert consultation. The study was scoped to “personnel and equipment at the EOD location” as the risk receptor and “undesired detonation” as the undesired event under investigation. Factors are subdivided into UXO factors that depend on the object that should be handled and factors that describe the object's surrounding environment. While the former can be researched by an EOD expert, the latter must be measured on site or acquired from a model. Each of these factors contributes to risk, some directly and others indirectly via other factors. The complexity of the resulting network, with its 33 factors, demonstrates the need for a reliable and reproducible model to quantify EOD risk. Its purpose is not to replace EOD experts but to aid them in their decision-making process. Such a tool can provide valuable support for the high-cost and high-risk EOD operations.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.