Toward Safer Autonomous Vehicles: Occlusion-Aware Trajectory Planning to Minimize Risky Behavior

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2023-11-24 DOI:10.1109/OJITS.2023.3336464
Rainer Trauth;Korbinian Moller;Johannes Betz
{"title":"Toward Safer Autonomous Vehicles: Occlusion-Aware Trajectory Planning to Minimize Risky Behavior","authors":"Rainer Trauth;Korbinian Moller;Johannes Betz","doi":"10.1109/OJITS.2023.3336464","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles face numerous challenges to ensure safe operation in unpredictable and hazardous conditions. The autonomous driving environment is characterized by high uncertainty, especially in occluded areas with limited information about the surrounding obstacles. This work aims to provide a trajectory planner to solve these unsafe environments. The work proposes an approach combining a visibility model, contextual environmental information, and behavioral planning algorithms to predict the likelihood of occlusions and collision probabilities. Ultimately, this allows us to estimate the potential harm from collisions with pedestrians in occluded situations. The primary goal of our proposed approach is to minimize the risk of hitting pedestrians and to establish a predefined, adjustable maximum level of harm. We show several practical applications for informing a sampling-based trajectory planner about occluded areas to increase safety. In addition, to respond to possible high-risk situations, we introduce an adjustable threshold that governs the vehicle’s speed when encountering uncertain situations and strategies to maximize the vehicle’s visible area. In implementing our novel methodology, we analyzed several real-world scenarios in a simulation environment. Our results indicate that combining occlusion-aware trajectory planning algorithms and harm estimation significantly influences vehicle driving behavior, especially in risky situations. The code used in this research is publicly available as open-source software and can be accessed at the following link: \n<uri>https://github.com/TUM-AVS/Frenetix-Motion-Planner</uri>\n.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"929-942"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328654","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10328654/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicles face numerous challenges to ensure safe operation in unpredictable and hazardous conditions. The autonomous driving environment is characterized by high uncertainty, especially in occluded areas with limited information about the surrounding obstacles. This work aims to provide a trajectory planner to solve these unsafe environments. The work proposes an approach combining a visibility model, contextual environmental information, and behavioral planning algorithms to predict the likelihood of occlusions and collision probabilities. Ultimately, this allows us to estimate the potential harm from collisions with pedestrians in occluded situations. The primary goal of our proposed approach is to minimize the risk of hitting pedestrians and to establish a predefined, adjustable maximum level of harm. We show several practical applications for informing a sampling-based trajectory planner about occluded areas to increase safety. In addition, to respond to possible high-risk situations, we introduce an adjustable threshold that governs the vehicle’s speed when encountering uncertain situations and strategies to maximize the vehicle’s visible area. In implementing our novel methodology, we analyzed several real-world scenarios in a simulation environment. Our results indicate that combining occlusion-aware trajectory planning algorithms and harm estimation significantly influences vehicle driving behavior, especially in risky situations. The code used in this research is publicly available as open-source software and can be accessed at the following link: https://github.com/TUM-AVS/Frenetix-Motion-Planner .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现更安全的自动驾驶汽车:感知遮挡的轨迹规划,将风险行为降至最低
自动驾驶汽车面临着许多挑战,以确保在不可预测和危险的条件下安全运行。自动驾驶环境具有很高的不确定性,特别是在闭塞区域,对周围障碍物的信息有限。这项工作旨在提供一个轨迹规划器来解决这些不安全的环境。该研究提出了一种结合可视性模型、上下文环境信息和行为规划算法来预测闭塞可能性和碰撞概率的方法。最终,这使我们能够估计在闭塞情况下与行人碰撞的潜在危害。我们提出的方法的主要目标是尽量减少撞到行人的风险,并建立一个预定义的、可调整的最大伤害水平。我们展示了几个实际应用,告知基于采样的轨迹规划器关于闭塞区域,以提高安全性。此外,为了应对可能出现的高风险情况,我们引入了一个可调节的阈值来控制车辆在遇到不确定情况时的速度,并引入了最大化车辆可见区域的策略。在实现我们的新方法时,我们在模拟环境中分析了几个真实世界的场景。我们的研究结果表明,结合闭塞感知轨迹规划算法和伤害估计显著影响车辆的驾驶行为,特别是在危险情况下。本研究中使用的代码是公开的开源软件,可以通过以下链接访问:https://github.com/TUM-AVS/Frenetix-Motion-Planner。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Open Journal of Intelligent Transportation Systems Vol. 5 Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors Front Cover IEEE Open Journal of Intelligent Transportation Systems Instructions for Authors IEEE OPEN JOURNAL OF THE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1