Securing smart home against sinkhole attack using weight-based IDS placement strategy

IF 1.5 Q3 TELECOMMUNICATIONS IET Wireless Sensor Systems Pub Date : 2023-11-28 DOI:10.1049/wss2.12069
Md. Shafiqul Islam, Muntaha Tasnim, Upama Kabir, Mosarrat Jahan
{"title":"Securing smart home against sinkhole attack using weight-based IDS placement strategy","authors":"Md. Shafiqul Islam,&nbsp;Muntaha Tasnim,&nbsp;Upama Kabir,&nbsp;Mosarrat Jahan","doi":"10.1049/wss2.12069","DOIUrl":null,"url":null,"abstract":"<p>Extensive use of the Internet of Things (IoT) in smart homes makes users' lives easy and comfortable. Yet, these resource-constrained devices are prone to manifold security attacks. The sinkhole attack is one of the most destructive attacks that disrupt smart home operations, causing user dissatisfaction. Existing intrusion detection systems (IDS) cannot handle sinkhole attacks competently as they (i) do not consider the node capacity for being an IDS agent, leading to a low attack detection ratio, (ii) do not examine the sinkhole node's role when mitigating attacks, causing remaining network disconnection with the root node and (iii) do not consider replacing energy-exhausted IDS nodes, causing connectivity loss of partial network with the root. This paper addresses these shortcomings and adequately presents a mechanism to handle sinkhole attacks. A formulation for assigning weights to network nodes based on their resources is proposed here. An IDS placement strategy is introduced to place IDS agents on particular resourceful nodes that extend network lifetime and enhance attack detection capability. We present a novel attack detection and mitigation strategy by ensuring network connectivity. The proposed mechanism achieves 95% attack detection accuracy and reduces false negative rates by 25% and energy consumption reasonably compared to the state-of-the-art.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12069","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive use of the Internet of Things (IoT) in smart homes makes users' lives easy and comfortable. Yet, these resource-constrained devices are prone to manifold security attacks. The sinkhole attack is one of the most destructive attacks that disrupt smart home operations, causing user dissatisfaction. Existing intrusion detection systems (IDS) cannot handle sinkhole attacks competently as they (i) do not consider the node capacity for being an IDS agent, leading to a low attack detection ratio, (ii) do not examine the sinkhole node's role when mitigating attacks, causing remaining network disconnection with the root node and (iii) do not consider replacing energy-exhausted IDS nodes, causing connectivity loss of partial network with the root. This paper addresses these shortcomings and adequately presents a mechanism to handle sinkhole attacks. A formulation for assigning weights to network nodes based on their resources is proposed here. An IDS placement strategy is introduced to place IDS agents on particular resourceful nodes that extend network lifetime and enhance attack detection capability. We present a novel attack detection and mitigation strategy by ensuring network connectivity. The proposed mechanism achieves 95% attack detection accuracy and reduces false negative rates by 25% and energy consumption reasonably compared to the state-of-the-art.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于权重的 IDS 布置策略确保智能家居免受天坑攻击
物联网(IoT)在智能家居中的广泛应用,让用户的生活变得轻松舒适。然而,这些资源受限的设备容易受到多种安全攻击。天坑攻击是破坏智能家居运行、引起用户不满的最具破坏性的攻击之一。现有的入侵检测系统(IDS)不能很好地处理天坑攻击,因为它们(i)没有考虑节点作为IDS代理的能力,导致攻击检测率低;(ii)在减轻攻击时没有检查天坑节点的作用,导致与根节点的剩余网络断开;(iii)没有考虑替换耗尽能量的IDS节点,导致部分网络与根节点失去连接。本文解决了这些缺点,并充分提出了一种处理天坑攻击的机制。本文提出了一种基于网络节点资源分配权重的公式。引入了一种IDS放置策略,将IDS代理放置在特定的资源丰富的节点上,从而延长网络生命周期并增强攻击检测能力。我们提出了一种通过确保网络连通性的新型攻击检测和缓解策略。该机制实现了95%的攻击检测准确率,并将假阴性率降低了25%,与目前的技术相比,能耗合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
期刊最新文献
Enhancing offloading with cybersecurity in edge computing for digital twin‐driven patient monitoring SmartCardio: Advancing cardiac risk prediction through Internet of things and edge cloud intelligence Wearable micro‐electro‐mechanical systems pressure sensors in health care: Advancements and trends—A review Design of shipborne cold chain monitoring system based on multi link compression transmission Optimising multi-user wireless networks through discrete Fourier transform-based channel estimation with cascaded intelligent reflecting surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1