{"title":"Automatic algorithm design of distributed hybrid flowshop scheduling with consistent sublots","authors":"Biao Zhang, Chao Lu, Lei-lei Meng, Yu-yan Han, Jiang Hu, Xu-chu Jiang","doi":"10.1007/s40747-023-01288-w","DOIUrl":null,"url":null,"abstract":"<p>The present-day globalized economy and diverse market demands have compelled an increasing number of manufacturing enterprises to move toward the distributed manufacturing pattern and the model of multi-variety and small-lot. Taking these two factors into account, this study investigates an extension of the distributed hybrid flowshop scheduling problem (DHFSP), called the distributed hybrid flowshop scheduling problem with consistent sublots (DHFSP_CS). To tackle this problem, a mixed integer linear programming (MILP) model is developed as a preliminary step. The NP-hard nature of the problem necessitates the use of the iterated F-Race (I/F-Race) as the automated algorithm design (AAD) to compose a metaheuristic that requires minimal user intervention. The I/F-Race enables identifying the ideal values of numerical and categorical parameters within a promising algorithm framework. An extension of the collaborative variable neighborhood descent algorithm (ECVND) is utilized as the algorithm framework, which is modified by intensifying efforts on the critical factories. In consideration of the problem-specific characteristics and the solution encoding, the configurable solution initializations, configurable solution decoding strategies, and configurable collaborative operators are designed. Additionally, several neighborhood structures are specially designed. Extensive computational results on simulation instances and a real-world instance demonstrate that the automated algorithm conceived by the AAD outperforms the CPLEX and other state-of-the-art metaheuristics in addressing the DHFSP_CS.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01288-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The present-day globalized economy and diverse market demands have compelled an increasing number of manufacturing enterprises to move toward the distributed manufacturing pattern and the model of multi-variety and small-lot. Taking these two factors into account, this study investigates an extension of the distributed hybrid flowshop scheduling problem (DHFSP), called the distributed hybrid flowshop scheduling problem with consistent sublots (DHFSP_CS). To tackle this problem, a mixed integer linear programming (MILP) model is developed as a preliminary step. The NP-hard nature of the problem necessitates the use of the iterated F-Race (I/F-Race) as the automated algorithm design (AAD) to compose a metaheuristic that requires minimal user intervention. The I/F-Race enables identifying the ideal values of numerical and categorical parameters within a promising algorithm framework. An extension of the collaborative variable neighborhood descent algorithm (ECVND) is utilized as the algorithm framework, which is modified by intensifying efforts on the critical factories. In consideration of the problem-specific characteristics and the solution encoding, the configurable solution initializations, configurable solution decoding strategies, and configurable collaborative operators are designed. Additionally, several neighborhood structures are specially designed. Extensive computational results on simulation instances and a real-world instance demonstrate that the automated algorithm conceived by the AAD outperforms the CPLEX and other state-of-the-art metaheuristics in addressing the DHFSP_CS.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.