Effects of calcium impurities on properties of magnesium oxychloride cement

IF 1.4 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Cement Research Pub Date : 2023-12-15 DOI:10.1680/jadcr.23.00182
Xinkuang Ning, Yong Zhang, Chengyou Wu
{"title":"Effects of calcium impurities on properties of magnesium oxychloride cement","authors":"Xinkuang Ning, Yong Zhang, Chengyou Wu","doi":"10.1680/jadcr.23.00182","DOIUrl":null,"url":null,"abstract":"China's salt lakes contain an abundance of magnesium resources, and salt-lake brine, a by-product of potash fertilizers, is often discharged back into the salt lakes, causing environmental damage. MgO from salt-lake brine can be used to produce magnesium oxychloride cement (MOC). However, the calcium impurities present in salt lakes affect the properties of MOC. To investigate the effects of these impurities, MgO was produced using a magnesium hydroxide precursor by calcination. By adding calcium hydroxide and calcium chloride, the incorporated calcium impurities were 0, 5, and 10% by mass of MgO. The compressive strength, heat of hydration, composition of the hydration product phases, and pore structure development of the MOC samples were evaluated. It was confirmed that Ca<sup>2+</sup> ions increased the early strength of MOC as well as its rate of setting and hardening. However, the presence of calcium impurities did not change the composition of its hydration phase. This was primarily because the Ca<sup>2+</sup> ions promoted the participation of MgO in the hydration reaction and enhanced the early strength of MOC. The findings of this study demonstrate the technical feasibility of utilizing magnesium resources from salt lakes to prepare MgO and apply it in the production of MOC.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":"76 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

China's salt lakes contain an abundance of magnesium resources, and salt-lake brine, a by-product of potash fertilizers, is often discharged back into the salt lakes, causing environmental damage. MgO from salt-lake brine can be used to produce magnesium oxychloride cement (MOC). However, the calcium impurities present in salt lakes affect the properties of MOC. To investigate the effects of these impurities, MgO was produced using a magnesium hydroxide precursor by calcination. By adding calcium hydroxide and calcium chloride, the incorporated calcium impurities were 0, 5, and 10% by mass of MgO. The compressive strength, heat of hydration, composition of the hydration product phases, and pore structure development of the MOC samples were evaluated. It was confirmed that Ca2+ ions increased the early strength of MOC as well as its rate of setting and hardening. However, the presence of calcium impurities did not change the composition of its hydration phase. This was primarily because the Ca2+ ions promoted the participation of MgO in the hydration reaction and enhanced the early strength of MOC. The findings of this study demonstrate the technical feasibility of utilizing magnesium resources from salt lakes to prepare MgO and apply it in the production of MOC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙杂质对氧氯化镁水泥性能的影响
中国的盐湖蕴藏着丰富的镁资源,而盐湖卤水是钾肥的副产品,经常被排放回盐湖,造成环境破坏。盐湖卤水中的氧化镁可用于生产氧氯化镁水泥(MOC)。然而,盐湖中的钙杂质会影响 MOC 的性能。为了研究这些杂质的影响,使用氢氧化镁前体通过煅烧生产氧化镁。通过添加氢氧化钙和氯化钙,掺入的钙杂质分别为氧化镁质量的 0、5 和 10%。对 MOC 样品的抗压强度、水化热、水化产物相的组成以及孔隙结构的发展进行了评估。结果证实,Ca2+ 离子提高了 MOC 的早期强度及其凝固和硬化速度。然而,钙杂质的存在并没有改变其水化相的组成。这主要是因为 Ca2+ 离子促进了氧化镁参与水化反应,提高了 MOC 的早期强度。本研究的结果证明了利用盐湖中的镁资源制备氧化镁并将其应用于 MOC 生产的技术可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Cement Research
Advances in Cement Research 工程技术-材料科学:综合
CiteScore
3.70
自引率
5.00%
发文量
56
审稿时长
3.2 months
期刊介绍: Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.
期刊最新文献
Amazon açaí fiber-Portland cement compatibility: a challenge to produce cement-bonded fiberboards? Influences of metakaolin and calcined clay blended cement on chloride resistance and electrical resistivity of concrete 3D printing concrete technology from a rheology perspective: a review Investigation of anionic group characteristics of PCEs on the behavior of fly ash cementitious systems Assessment of meta-schist as a novel sustainable resource for Portland cement manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1