Shrinkage estimators of BLUE for time series regression models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-12-15 DOI:10.1016/j.jmva.2023.105282
Yujie Xue , Masanobu Taniguchi , Tong Liu
{"title":"Shrinkage estimators of BLUE for time series regression models","authors":"Yujie Xue ,&nbsp;Masanobu Taniguchi ,&nbsp;Tong Liu","doi":"10.1016/j.jmva.2023.105282","DOIUrl":null,"url":null,"abstract":"<div><p><span>The least squares estimator<span><span> (LSE) seems a natural estimator of linear regression models. Whereas, if the dimension of the vector of regression coefficients is greater than 1 and the residuals are dependent, the best </span>linear unbiased estimator<span> (BLUE), which includes the information of the covariance matrix </span></span></span><span><math><mi>Γ</mi></math></span><span><span> of residual process has a better performance than LSE in the sense of mean square error. As we know the </span>unbiased estimators<span> are generally inadmissible, Senda and Taniguchi (2006) introduced a James–Stein type shrinkage estimator for the regression coefficients based on LSE, where the residual process is a Gaussian stationary process, and provides sufficient conditions such that the James–Stein type shrinkage estimator improves LSE. In this paper, we propose a shrinkage estimator based on BLUE. Sufficient conditions for this shrinkage estimator to improve BLUE are also given. Furthermore, since </span></span><span><math><mi>Γ</mi></math></span> is infeasible, assuming that <span><math><mi>Γ</mi></math></span> has a form of <span><math><mrow><mi>Γ</mi><mo>=</mo><mi>Γ</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span>, we introduce a feasible version of that shrinkage estimator with replacing <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> by <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mover><mrow><mi>θ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span><span> which is introduced in Toyooka (1986). Additionally, we give the sufficient conditions where the feasible version improves BLUE. Besides, the results of a numerical studies confirm our approach.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"202 ","pages":"Article 105282"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001288","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The least squares estimator (LSE) seems a natural estimator of linear regression models. Whereas, if the dimension of the vector of regression coefficients is greater than 1 and the residuals are dependent, the best linear unbiased estimator (BLUE), which includes the information of the covariance matrix Γ of residual process has a better performance than LSE in the sense of mean square error. As we know the unbiased estimators are generally inadmissible, Senda and Taniguchi (2006) introduced a James–Stein type shrinkage estimator for the regression coefficients based on LSE, where the residual process is a Gaussian stationary process, and provides sufficient conditions such that the James–Stein type shrinkage estimator improves LSE. In this paper, we propose a shrinkage estimator based on BLUE. Sufficient conditions for this shrinkage estimator to improve BLUE are also given. Furthermore, since Γ is infeasible, assuming that Γ has a form of Γ=Γ(θ), we introduce a feasible version of that shrinkage estimator with replacing Γ(θ) by Γ(θˆ) which is introduced in Toyooka (1986). Additionally, we give the sufficient conditions where the feasible version improves BLUE. Besides, the results of a numerical studies confirm our approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列回归模型 BLUE 的收缩估计器
最小二乘估计器(LSE)似乎是线性回归模型的天然估计器。然而,如果回归系数向量的维度大于 1 且残差具有依赖性,则包含残差过程协方差矩阵 Γ 信息的最佳线性无偏估计器(BLUE)在均方误差意义上比 LSE 具有更好的性能。我们知道无偏估计器一般是不允许的,因此 Senda 和 Taniguchi(2006 年)提出了基于 LSE 的回归系数 James-Stein 型收缩估计器,其中残差过程是高斯静止过程,并提供了 James-Stein 型收缩估计器改进 LSE 的充分条件。本文提出了一种基于 BLUE 的收缩估计器。本文还给出了该收缩估计器改善 BLUE 的充分条件。此外,由于 Γ 是不可行的,假设 Γ 的形式为 Γ=Γ(θ),我们引入了该收缩估计器的可行版本,将 Γ(θ) 替换为 Toyooka (1986) 中引入的 Γ(θˆ)。此外,我们还给出了可行版本改进 BLUE 的充分条件。此外,数值研究的结果也证实了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1