{"title":"Nowcasting with panels and alternative data: The OECD weekly tracker","authors":"","doi":"10.1016/j.ijforecast.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>Alternative data are timely but messy. They can provide policymakers with real-time information, but their use is constrained by the complexity of their relationship with official statistics<span><span>. Data from credit card transactions, search engines, or traffic have been made available since only recently, which makes it more difficult to precisely gauge their relationship with national accounts. This paper aims at solving this problem by compensating their short history with their large country coverage. It introduces a heterogeneous panel model approach where a </span>neural network learns the relationship between Google Trends data and GDP growth from data pooled from 46 countries. The resulting “OECD Weekly Tracker” yields real-time estimates of weekly GDP, which are proven to be accurate using forecast simulations. It is a valuable compass for policymaking in turbulent waters.</span></p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1302-1335"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001139","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Alternative data are timely but messy. They can provide policymakers with real-time information, but their use is constrained by the complexity of their relationship with official statistics. Data from credit card transactions, search engines, or traffic have been made available since only recently, which makes it more difficult to precisely gauge their relationship with national accounts. This paper aims at solving this problem by compensating their short history with their large country coverage. It introduces a heterogeneous panel model approach where a neural network learns the relationship between Google Trends data and GDP growth from data pooled from 46 countries. The resulting “OECD Weekly Tracker” yields real-time estimates of weekly GDP, which are proven to be accurate using forecast simulations. It is a valuable compass for policymaking in turbulent waters.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.