Antoine de Zélicourt , Abdallah Fayssoil , Arnaud Mansart , Faouzi Zarrouki , Ahmed Karoui , Jérome Piquereau , Florence Lefebvre , Pascale Gerbaud , Delphine Mika , Mbarka Dakouane-Giudicelli , Erwan Lanchec , Miao Feng , Véronique Leblais , Régis Bobe , Jean-Marie Launay , Antony Galione , Ana Maria Gomez , Sabine de la Porte , José-Manuel Cancela
{"title":"Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling","authors":"Antoine de Zélicourt , Abdallah Fayssoil , Arnaud Mansart , Faouzi Zarrouki , Ahmed Karoui , Jérome Piquereau , Florence Lefebvre , Pascale Gerbaud , Delphine Mika , Mbarka Dakouane-Giudicelli , Erwan Lanchec , Miao Feng , Véronique Leblais , Régis Bobe , Jean-Marie Launay , Antony Galione , Ana Maria Gomez , Sabine de la Porte , José-Manuel Cancela","doi":"10.1016/j.ceca.2023.102839","DOIUrl":null,"url":null,"abstract":"<div><p>Ca<sup>2+</sup> signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation “two-pore channel” (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (<em>Tpcn1/2<sup>−/−</sup></em>) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from <em>Tpcn1/2<sup>−/-</sup></em> mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca<sup>2+</sup> content and a reduced expression of various key proteins regulating Ca<sup>2+</sup> stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"117 ","pages":"Article 102839"},"PeriodicalIF":4.3000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416023001501","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation “two-pore channel” (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2−/−) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2−/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes