Ioanna Mitropoulou , Amir Vaxman , Olga Diamanti , Benjamin Dillenburger
{"title":"Fabrication-aware strip-decomposable quadrilateral meshes","authors":"Ioanna Mitropoulou , Amir Vaxman , Olga Diamanti , Benjamin Dillenburger","doi":"10.1016/j.cad.2023.103666","DOIUrl":null,"url":null,"abstract":"<div><p>Strip-decomposable quadrilateral (SDQ) meshes, i.e., quad meshes that can be decomposed into two transversal strip networks, are vital in numerous fabrication processes; examples include woven structures, surfaces from sheets, custom rebar, or cable-net structures. However, their design is often challenging and includes tedious manual work, and there is a lack of methodologies for editing such meshes while preserving their strip decomposability. We present an interactive methodology to generate and edit SDQ meshes aligned to user-defined directions, while also incorporating desirable properties to the strips for fabrication. Our technique is based on the computation of two coupled transversal tangent direction fields, integrated into two overlapping networks of strips on the surface. As a case study, we consider the fabrication scenario of robotic non-planar 3D printing of free-form surfaces and apply the presented methodology to design and fabricate non-planar print paths.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448523001987/pdfft?md5=e0df2ba7fb95a50507fc2dba7312452d&pid=1-s2.0-S0010448523001987-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523001987","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Strip-decomposable quadrilateral (SDQ) meshes, i.e., quad meshes that can be decomposed into two transversal strip networks, are vital in numerous fabrication processes; examples include woven structures, surfaces from sheets, custom rebar, or cable-net structures. However, their design is often challenging and includes tedious manual work, and there is a lack of methodologies for editing such meshes while preserving their strip decomposability. We present an interactive methodology to generate and edit SDQ meshes aligned to user-defined directions, while also incorporating desirable properties to the strips for fabrication. Our technique is based on the computation of two coupled transversal tangent direction fields, integrated into two overlapping networks of strips on the surface. As a case study, we consider the fabrication scenario of robotic non-planar 3D printing of free-form surfaces and apply the presented methodology to design and fabricate non-planar print paths.