Iraj Alipourfard , Mohammad Darvishi , Arghavan khalighfard , Farhood Ghazi , Ahmad Mobed
{"title":"Nanomaterial-based methods for sepsis management","authors":"Iraj Alipourfard , Mohammad Darvishi , Arghavan khalighfard , Farhood Ghazi , Ahmad Mobed","doi":"10.1016/j.enzmictec.2023.110380","DOIUrl":null,"url":null,"abstract":"<div><p>Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022923001886","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.