{"title":"Structural effects induced by dialysis-based purification of carbon nanomaterials","authors":"","doi":"10.1016/j.nanoms.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Dialysis plays a crucial role in the purification of nanomaterials but its impact on the structural properties of carbon nanomaterials was never investigated. Herein, a carbon-based nanomaterial generated electrochemically in potassium phosphate buffer, was characterized before and after dialysis against pure water. It is shown that dialysis affects the size of the carbon domains, structural organization, surface functionalization, oxidation degree of carbon, and grade of amorphicity. Accordingly, dialysis drives the nanomaterial organization from discrete roundish carbon domains, with sizes ranging from 70 to 160 nm, towards linear stacking structures of small nanoparticles (<15 nm). In parallel, alcohol and ether (epoxide) surface groups evolve into more oxidized carbon groups (e.g., ketone and ester groups). Investigation of the as-prepared nanomaterial by electron paramagnetic resonance (EPR) revealed a resonance signal consistent with carbon-oxygen centred radicals.</p><p>Additionally, this study brings to light the selective affinity of the carbon nanomaterial under study to capture Na<sup>+</sup> ions, a property greatly enhanced by the dialysis process, and its high ability to trap oxygen, particularly before dialysis. These findings open new perspectives for the application of carbon-based nanomaterials and raise awareness of the importance of structural changes that can occur during the purification of carbon-based nanomaterials.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 4","pages":"Pages 475-483"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258996512300079X/pdfft?md5=8193052ee0297268166bc2e9c62884b0&pid=1-s2.0-S258996512300079X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258996512300079X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Dialysis plays a crucial role in the purification of nanomaterials but its impact on the structural properties of carbon nanomaterials was never investigated. Herein, a carbon-based nanomaterial generated electrochemically in potassium phosphate buffer, was characterized before and after dialysis against pure water. It is shown that dialysis affects the size of the carbon domains, structural organization, surface functionalization, oxidation degree of carbon, and grade of amorphicity. Accordingly, dialysis drives the nanomaterial organization from discrete roundish carbon domains, with sizes ranging from 70 to 160 nm, towards linear stacking structures of small nanoparticles (<15 nm). In parallel, alcohol and ether (epoxide) surface groups evolve into more oxidized carbon groups (e.g., ketone and ester groups). Investigation of the as-prepared nanomaterial by electron paramagnetic resonance (EPR) revealed a resonance signal consistent with carbon-oxygen centred radicals.
Additionally, this study brings to light the selective affinity of the carbon nanomaterial under study to capture Na+ ions, a property greatly enhanced by the dialysis process, and its high ability to trap oxygen, particularly before dialysis. These findings open new perspectives for the application of carbon-based nanomaterials and raise awareness of the importance of structural changes that can occur during the purification of carbon-based nanomaterials.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.