Low-temperature replacement construction of three-dimensional corrosion-resistant interface for deeply rechargeable Zn metal batteries

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-06-01 DOI:10.1016/j.nanoms.2023.11.004
Jinze Li , Daniel Röhrens , Gianluca Dalfollo , Xiaochao Wu , Ziheng Lu , Qiang Gao , Bo Han , Ruimin Sun , Chenggang Zhou , Jindi Wang , Zhao Cai
{"title":"Low-temperature replacement construction of three-dimensional corrosion-resistant interface for deeply rechargeable Zn metal batteries","authors":"Jinze Li ,&nbsp;Daniel Röhrens ,&nbsp;Gianluca Dalfollo ,&nbsp;Xiaochao Wu ,&nbsp;Ziheng Lu ,&nbsp;Qiang Gao ,&nbsp;Bo Han ,&nbsp;Ruimin Sun ,&nbsp;Chenggang Zhou ,&nbsp;Jindi Wang ,&nbsp;Zhao Cai","doi":"10.1016/j.nanoms.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous Zn batteries are promising candidates for grid-scale renewable energy storage. Foil electrodes have been widely investigated and applied as anode materials for aqueous Zn batteries, however, they suffer from limited surface area and severe interfacial issues including metallic dendrites and corrosion side reactions, limiting the depth of discharge (DOD) of the foil electrode materials. Herein, a low-temperature replacement reaction is utilized to <em>in-situ</em> construct a three-dimensional (3D) corrosion-resistant interface for deeply rechargeable Zn foil electrodes. Specifically, the deliberate low-temperature environment controlled the replacement rate between polycrystalline Zn metal and oxalic acid, producing a Zn foil electrode with distinct 3D corrosion-resistant interface (3DCI-Zn), which differed from conventional two-dimensional (2D) protective structure and showed an order of magnitude higher surface area. Consequently, the 3DCI-Zn electrode exhibited dendrite-free and anti-corrosion properties, and achieved stable plating/stripping performance for 1000 ​h at 10 ​mA ​cm<sup>−2</sup> and 10 mAh cm<sup>−2</sup> with a remarkable DOD of 79 ​%. After pairing with a MnO<sub>2</sub> cathode with a high areal capacity of 4.2 mAh cm<sup>−2</sup>, the pouch cells delivered 168 ​Wh L<sup>−1</sup> and a capacity retention of 89.7 % after 100 cycles with a low negative/positive (N/P) ratio of 3:1.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000727/pdfft?md5=595a80a21077e98df5762f52e5a748e2&pid=1-s2.0-S2589965123000727-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000727","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn batteries are promising candidates for grid-scale renewable energy storage. Foil electrodes have been widely investigated and applied as anode materials for aqueous Zn batteries, however, they suffer from limited surface area and severe interfacial issues including metallic dendrites and corrosion side reactions, limiting the depth of discharge (DOD) of the foil electrode materials. Herein, a low-temperature replacement reaction is utilized to in-situ construct a three-dimensional (3D) corrosion-resistant interface for deeply rechargeable Zn foil electrodes. Specifically, the deliberate low-temperature environment controlled the replacement rate between polycrystalline Zn metal and oxalic acid, producing a Zn foil electrode with distinct 3D corrosion-resistant interface (3DCI-Zn), which differed from conventional two-dimensional (2D) protective structure and showed an order of magnitude higher surface area. Consequently, the 3DCI-Zn electrode exhibited dendrite-free and anti-corrosion properties, and achieved stable plating/stripping performance for 1000 ​h at 10 ​mA ​cm−2 and 10 mAh cm−2 with a remarkable DOD of 79 ​%. After pairing with a MnO2 cathode with a high areal capacity of 4.2 mAh cm−2, the pouch cells delivered 168 ​Wh L−1 and a capacity retention of 89.7 % after 100 cycles with a low negative/positive (N/P) ratio of 3:1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度可充电锌金属电池的三维抗腐蚀界面的低温置换结构
锌水电池是电网规模可再生能源储能的理想候选材料。箔电极作为锌水溶液电池的阳极材料已被广泛研究和应用,但其表面积有限,界面问题严重,包括金属枝晶和腐蚀副反应,从而限制了箔电极材料的放电深度(DOD)。本文利用低温置换反应,为深度充电锌箔电极原位构建了三维(3D)抗腐蚀界面。具体来说,特意设计的低温环境控制了多晶金属锌和草酸之间的置换率,从而产生了具有独特三维抗腐蚀界面(3DCI-Zn)的锌箔电极,这种界面不同于传统的二维(2D)保护结构,表面积高出一个数量级。因此,3DCI-Zn 电极具有无树枝状晶粒和抗腐蚀的特性,在 10 mA cm-2 和 10 mAh cm-2 条件下可稳定电镀/剥离 1000 小时,DOD 高达 79%。在与具有 4.2 mAh cm-2 高面积容量的 MnO2 阴极配对后,袋式电池在 3:1 的低负极/正极 (N/P) 比下,经过 100 次循环后,可提供 168 Wh L-1 的容量,容量保持率为 89.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1