Numerical simulation of nanosecond laser drilling of 316L stainless steel: addition of laser focus and analysis of manufacturing process

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2023-12-08 DOI:10.1088/1361-651x/ad0e79
Junliang Zhao, Chen Li, Jing Wang
{"title":"Numerical simulation of nanosecond laser drilling of 316L stainless steel: addition of laser focus and analysis of manufacturing process","authors":"Junliang Zhao, Chen Li, Jing Wang","doi":"10.1088/1361-651x/ad0e79","DOIUrl":null,"url":null,"abstract":"A two-dimensional model of nanosecond laser drilling 316L stainless steel was established with the consideration of laser focus, which was indeed different from the original two-phase flow model without laser focus, especially in the temperature field, velocity field, surface morphology and hole depth. Simulation and experiment of drilling holes with different laser repetition frequencies (100 kHz, 50 kHz and 20 kHz) were carried out. The results show that manufacturing process could divide into three stages: high-efficiency phase, stabilization stage and low-efficiency phase. Meanwhile, the limited number of pulses at 100 kHz, 50 kHz and 20 kHz were obtained, and the values were approximately 289, 367 and 492, respectively. More, the values at 10 kHz and 200 kHz obtained by modeling were very close to those calculated by the fitted equation. All the research provides theoretical, simulation and experimental basis for designing and optimizing parameters on laser surface manufacturing.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad0e79","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A two-dimensional model of nanosecond laser drilling 316L stainless steel was established with the consideration of laser focus, which was indeed different from the original two-phase flow model without laser focus, especially in the temperature field, velocity field, surface morphology and hole depth. Simulation and experiment of drilling holes with different laser repetition frequencies (100 kHz, 50 kHz and 20 kHz) were carried out. The results show that manufacturing process could divide into three stages: high-efficiency phase, stabilization stage and low-efficiency phase. Meanwhile, the limited number of pulses at 100 kHz, 50 kHz and 20 kHz were obtained, and the values were approximately 289, 367 and 492, respectively. More, the values at 10 kHz and 200 kHz obtained by modeling were very close to those calculated by the fitted equation. All the research provides theoretical, simulation and experimental basis for designing and optimizing parameters on laser surface manufacturing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
316L 不锈钢纳秒激光钻孔的数值模拟:增加激光焦点和分析制造过程
建立了考虑激光聚焦的纳秒激光钻削 316L 不锈钢的二维模型,该模型与无激光聚焦的原始两相流模型确有不同,尤其是在温度场、速度场、表面形态和孔深方面。对不同激光重复频率(100 kHz、50 kHz 和 20 kHz)的钻孔进行了模拟和实验。结果表明,制造过程可分为三个阶段:高效阶段、稳定阶段和低效阶段。同时,在 100 kHz、50 kHz 和 20 kHz 频率下获得的有限脉冲数分别约为 289、367 和 492。此外,建模得到的 10 kHz 和 200 kHz 的值与拟合方程计算的值非常接近。所有研究都为激光表面制造参数的设计和优化提供了理论、模拟和实验依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1