A case for ongoing structural support to maximise infectious disease modelling efficiency for future public health emergencies: A modelling perspective

IF 3 3区 医学 Q2 INFECTIOUS DISEASES Epidemics Pub Date : 2023-12-13 DOI:10.1016/j.epidem.2023.100734
Epke A. Le Rutte , Andrew J. Shattock , Cheng Zhao , Soushieta Jagadesh , Miloš Balać , Sebastian A. Müller , Kai Nagel , Alexander L. Erath , Kay W. Axhausen , Thomas P. Van Boeckel , Melissa A. Penny
{"title":"A case for ongoing structural support to maximise infectious disease modelling efficiency for future public health emergencies: A modelling perspective","authors":"Epke A. Le Rutte ,&nbsp;Andrew J. Shattock ,&nbsp;Cheng Zhao ,&nbsp;Soushieta Jagadesh ,&nbsp;Miloš Balać ,&nbsp;Sebastian A. Müller ,&nbsp;Kai Nagel ,&nbsp;Alexander L. Erath ,&nbsp;Kay W. Axhausen ,&nbsp;Thomas P. Van Boeckel ,&nbsp;Melissa A. Penny","doi":"10.1016/j.epidem.2023.100734","DOIUrl":null,"url":null,"abstract":"<div><p>This short communication reflects upon the challenges and recommendations of multiple COVID-19 modelling and data analytic groups that provided quantitative evidence to support health policy discussions in Switzerland and Germany during the SARS-CoV-2 pandemic.</p><p>Capacity strengthening outside infectious disease emergencies will be required to enable an environment for a timely, efficient, and data-driven response to support decisions during any future infectious disease emergency.</p><p>This will require 1) a critical mass of trained experts who continuously advance state-of-the-art methodological tools, 2) the establishment of structural liaisons amongst scientists and decision-makers, and 3) the foundation and management of data-sharing frameworks.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"46 ","pages":"Article 100734"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000701/pdfft?md5=41aee9a81b2e351e51317db259a7d544&pid=1-s2.0-S1755436523000701-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000701","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

This short communication reflects upon the challenges and recommendations of multiple COVID-19 modelling and data analytic groups that provided quantitative evidence to support health policy discussions in Switzerland and Germany during the SARS-CoV-2 pandemic.

Capacity strengthening outside infectious disease emergencies will be required to enable an environment for a timely, efficient, and data-driven response to support decisions during any future infectious disease emergency.

This will require 1) a critical mass of trained experts who continuously advance state-of-the-art methodological tools, 2) the establishment of structural liaisons amongst scientists and decision-makers, and 3) the foundation and management of data-sharing frameworks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从建模角度看持续提供结构性支持以最大限度地提高传染病建模效率以应对未来突发公共卫生事件的理由
这篇简短的文章反映了多个 COVID-19 建模和数据分析小组所面临的挑战和提出的建议,这些小组在 SARS-CoV-2 大流行期间为瑞士和德国的卫生政策讨论提供了定量证据。这就需要:1)拥有足够数量的训练有素的专家,不断推进最先进的方法工具;2)在科学家和决策者之间建立结构性联络;3)建立和管理数据共享框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
期刊最新文献
Estimating the generation time for influenza transmission using household data in the United States. Reconstructing the first COVID-19 pandemic wave with minimal data in England. Retrospective modelling of the disease and mortality burden of the 1918-1920 influenza pandemic in Zurich, Switzerland. Flusion: Integrating multiple data sources for accurate influenza predictions. Infectious diseases: Household modeling with missing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1