{"title":"Tree growth performance and xylem functional arrangements of Macrolobium Schreb. (Fabaceae) in different wetland forests in the Central Amazon basin","authors":"Yanka Laryssa Almeida Alves, Flavia Machado Durgante, Maria Teresa Fernandez Piedade, Florian Wittmann, Jochen Schӧngart","doi":"10.1007/s00468-023-02469-3","DOIUrl":null,"url":null,"abstract":"<p>Tree growth is influenced by a combination of genetic, ontogenetic, physiological and morphological responses to environmental factors. However, the challenge still is to identify the trigger of tree growth and different combinations of functional traits that make the same genus develop to adapt or survive in different environments. To fill this gap, functional characteristics related to anatomy, structure and growth of wood were selected, and the diameter increment rate and monthly phenology were monitored to discover the rhythm and period of growth of a congeneric pair of <i>Macrolobium</i> Schreb. (<i>M</i>. <i>duckeanum</i> and <i>M</i>. <i>bifolium</i>) in different wetland ecosystems (white-sand ecosystem and black-water floodplain forest) of the Central Amazon. Hydrological, climatic and edaphic data were used to characterize the wetland habitats. The results indicate that the growth period and rhythm of congeneric <i>Macrolobium</i> species differ in response to limiting environmental conditions. The rhythm was influenced by the water deficit in the white-sand ecosystem, while it was controlled by anoxic conditions (flooding) in the black-water floodplain forest. The trees developed different functional strategies to deal with the specific environmental conditions of each wetland, indicating an enormous functional diversity of this genus to adjust to environmental variations and changes.</p>","PeriodicalId":805,"journal":{"name":"Trees","volume":"38 1","pages":"115 - 126"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-023-02469-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Tree growth is influenced by a combination of genetic, ontogenetic, physiological and morphological responses to environmental factors. However, the challenge still is to identify the trigger of tree growth and different combinations of functional traits that make the same genus develop to adapt or survive in different environments. To fill this gap, functional characteristics related to anatomy, structure and growth of wood were selected, and the diameter increment rate and monthly phenology were monitored to discover the rhythm and period of growth of a congeneric pair of Macrolobium Schreb. (M. duckeanum and M. bifolium) in different wetland ecosystems (white-sand ecosystem and black-water floodplain forest) of the Central Amazon. Hydrological, climatic and edaphic data were used to characterize the wetland habitats. The results indicate that the growth period and rhythm of congeneric Macrolobium species differ in response to limiting environmental conditions. The rhythm was influenced by the water deficit in the white-sand ecosystem, while it was controlled by anoxic conditions (flooding) in the black-water floodplain forest. The trees developed different functional strategies to deal with the specific environmental conditions of each wetland, indicating an enormous functional diversity of this genus to adjust to environmental variations and changes.
期刊介绍:
Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.