{"title":"A fresh look at mean-shift based modal clustering","authors":"Jose Ameijeiras-Alonso, Jochen Einbeck","doi":"10.1007/s11634-023-00575-1","DOIUrl":null,"url":null,"abstract":"<div><p>Modal clustering is an unsupervised learning technique where cluster centers are identified as the local maxima of nonparametric probability density estimates. A natural algorithmic engine for the computation of these maxima is the <i>mean shift procedure</i>, which is essentially an iteratively computed chain of local means. We revisit this technique, focusing on its link to kernel density gradient estimation, in this course proposing a novel concept for bandwidth selection based on the concept of a critical bandwidth. Furthermore, in the one-dimensional case, an inverse version of the mean shift is developed to provide a novel approach for the estimation of antimodes, which is then used to identify cluster boundaries. A simulation study is provided which assesses, in the univariate case, the classification accuracy of the mean-shift based clustering approach. Three (univariate and multivariate) examples from the fields of philately, engineering, and imaging, illustrate how modal clusterings identified through mean shift based methods relate directly and naturally to physical properties of the data-generating system. Solutions are proposed to deal computationally efficiently with large data sets.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 4","pages":"1067 - 1095"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00575-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Modal clustering is an unsupervised learning technique where cluster centers are identified as the local maxima of nonparametric probability density estimates. A natural algorithmic engine for the computation of these maxima is the mean shift procedure, which is essentially an iteratively computed chain of local means. We revisit this technique, focusing on its link to kernel density gradient estimation, in this course proposing a novel concept for bandwidth selection based on the concept of a critical bandwidth. Furthermore, in the one-dimensional case, an inverse version of the mean shift is developed to provide a novel approach for the estimation of antimodes, which is then used to identify cluster boundaries. A simulation study is provided which assesses, in the univariate case, the classification accuracy of the mean-shift based clustering approach. Three (univariate and multivariate) examples from the fields of philately, engineering, and imaging, illustrate how modal clusterings identified through mean shift based methods relate directly and naturally to physical properties of the data-generating system. Solutions are proposed to deal computationally efficiently with large data sets.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.