{"title":"Restricted Birkhoff Polytopes and Ehrhart Period Collapse","authors":"Per Alexandersson, Sam Hopkins, Gjergji Zaimi","doi":"10.1007/s00454-023-00611-z","DOIUrl":null,"url":null,"abstract":"<p>We show that the polytopes obtained from the Birkhoff polytope by imposing additional inequalities restricting the “longest increasing subsequence” have Ehrhart quasi-polynomials which are honest polynomials, even though they are just rational polytopes in general. We do this by defining a continuous, piecewise-linear bijection to a certain Gelfand–Tsetlin polytope. This bijection is not an integral equivalence but it respects lattice points in the appropriate way to imply that the two polytopes have the same Ehrhart (quasi-)polynomials. In fact, the bijection is essentially the Robinson–Schensted–Knuth correspondence.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00611-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the polytopes obtained from the Birkhoff polytope by imposing additional inequalities restricting the “longest increasing subsequence” have Ehrhart quasi-polynomials which are honest polynomials, even though they are just rational polytopes in general. We do this by defining a continuous, piecewise-linear bijection to a certain Gelfand–Tsetlin polytope. This bijection is not an integral equivalence but it respects lattice points in the appropriate way to imply that the two polytopes have the same Ehrhart (quasi-)polynomials. In fact, the bijection is essentially the Robinson–Schensted–Knuth correspondence.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.