STEAP4 inhibits cisplatin-induced chemotherapy resistance through suppressing PI3K/AKT in hepatocellular carcinoma

IF 6 3区 医学 Q1 CELL BIOLOGY Cancer & Metabolism Pub Date : 2023-12-18 DOI:10.1186/s40170-023-00323-1
Binhui Xie, Baiyin Zhong, Zhenxian Zhao, Jie Hu, Jianqiong Yang, Yuankang Xie, Jianhong Zhang, Jianting Long, Xuewei Yang, Heping Li
{"title":"STEAP4 inhibits cisplatin-induced chemotherapy resistance through suppressing PI3K/AKT in hepatocellular carcinoma","authors":"Binhui Xie, Baiyin Zhong, Zhenxian Zhao, Jie Hu, Jianqiong Yang, Yuankang Xie, Jianhong Zhang, Jianting Long, Xuewei Yang, Heping Li","doi":"10.1186/s40170-023-00323-1","DOIUrl":null,"url":null,"abstract":"Chemotherapy resistance is the leading cause for hepatocellular carcinoma (HCC)-induced death. Exploring resistance generation mechanism is an urgent need for HCC therapy. Here, we found STEAP4 was significantly downregulated in HCC patients with recurrence. Patients with low STEAP4 had poor outcome, suggesting STEAP4 might inhibit chemotherapy resistance. Cell viability assay, colony formation assay, apoptosis assay, soft agar growth assay, and tumor animal model showed STEAP4 inhibited cisplatin resistance. Mechanism analysis showed STEAP4 inhibited PI3K/AKT pathway through directly interacting with AKT. Double knockdown of STEP4 and AKT significantly inhibited cisplatin resistance. We also found STEAP4 expression was negatively correlated with PI3K/AKT pathway activity in clinic specimens. In summary, our findings suggested STEAP4 inhibited cisplatin resistance through suppressing PI3K/AKT pathway activity, providing a target for HCC therapy. ","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"37 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-023-00323-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy resistance is the leading cause for hepatocellular carcinoma (HCC)-induced death. Exploring resistance generation mechanism is an urgent need for HCC therapy. Here, we found STEAP4 was significantly downregulated in HCC patients with recurrence. Patients with low STEAP4 had poor outcome, suggesting STEAP4 might inhibit chemotherapy resistance. Cell viability assay, colony formation assay, apoptosis assay, soft agar growth assay, and tumor animal model showed STEAP4 inhibited cisplatin resistance. Mechanism analysis showed STEAP4 inhibited PI3K/AKT pathway through directly interacting with AKT. Double knockdown of STEP4 and AKT significantly inhibited cisplatin resistance. We also found STEAP4 expression was negatively correlated with PI3K/AKT pathway activity in clinic specimens. In summary, our findings suggested STEAP4 inhibited cisplatin resistance through suppressing PI3K/AKT pathway activity, providing a target for HCC therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STEAP4 通过抑制肝细胞癌中的 PI3K/AKT 抑制顺铂诱导的化疗耐药性
化疗耐药性是导致肝细胞癌(HCC)死亡的主要原因。探索耐药性的产生机制是 HCC 治疗的迫切需要。在这里,我们发现 STEAP4 在复发的 HCC 患者中明显下调。低STEAP4的患者预后较差,这表明STEAP4可能抑制化疗耐药。细胞活力测定、集落形成测定、细胞凋亡测定、软琼脂生长测定和肿瘤动物模型显示,STEAP4可抑制顺铂耐药性。机理分析表明,STEAP4 通过直接与 AKT 相互作用来抑制 PI3K/AKT 通路。STEP4 和 AKT 的双重敲除可明显抑制顺铂耐药。我们还发现,在临床标本中,STEAP4的表达与PI3K/AKT通路的活性呈负相关。总之,我们的研究结果表明 STEAP4 通过抑制 PI3K/AKT 通路的活性来抑制顺铂耐药,为 HCC 治疗提供了靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
期刊最新文献
Glutaminolysis is associated with mitochondrial pathway activation and can be therapeutically targeted in glioblastoma. Complete inhibition of liver acetyl-CoA carboxylase activity is required to exacerbate liver tumorigenesis in mice treated with diethylnitrosamine. CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function. GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1