{"title":"Reverse transcription loop-mediated isothermal amplification (RT-LAMP) primer design based on Indonesia SARS-CoV-2 RNA sequence","authors":"Irsyad Ibadurrahman, Suryani, Desriani","doi":"10.1186/s43141-023-00580-z","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has highlighted the importance of tracking cases by using various methods such as the Reverse transcription loop-mediated isothermal amplification (RT-LAMP) which is a fast, simple, inexpensive, and accurate mass tracker. However, there have been no reports about the development of RT-LAMP primer designs that use genome sequences of viruses from Indonesia. Therefore, this study aimed to design an RT-LAMP primer using SARS-CoV-2 genome sequences from Indonesia and several other countries representing five continents in the world, as well as genomes from five Variants of Concern (VOC). The results showed that the consensus sequence of 70 SARS-CoV-2 virus sequences was obtained with a length of 29,982 bases. The phylogenetic test confirmed that the consensus sequence had a close kinship with the SARS-CoV-2 Wuhan Isolate. Furthermore, the SimPlot analysis showed that there was a high genetic diversity of sequences from the Coronaviridae tribal virus at base sequences of 1,500–5,000, 6,500–7,500, and 23,300–25,500. A total of 139 sets of primers were obtained from the primer design with 4 sets namely T1_6, T1_9, T4_7, and T4_52 having the best characteristics. Based on the secondary structure analysis test on 4 sets of primers, T1_6 and T1_9 were predicted not to form secondary structures at RT-LAMP operational temperatures. The primer set T1_9 showed better specificity in BLAST NCBI and eLAMP BLAST tests. This study obtained a primer set of T1_9 with base sequence F3: CACTGAGACTCATTGATGCTATG, B3: CCAACCGTCTCTAAGAAACTCT, F2: GTTCACATCTGATTTGGCTACT, F1c: GAAGTCAACTGAACAACACCACCT, B2: CCTTCCTTAAACTTCTCTTCAAGC, B1c: GTGGCTAACTAACATCTTTGGCACT, LB: TGAAAACAAACCCGCCGTCCTTG, which meets the ideal parameters and has the best specificity. Therefore, it is recommended for use in further tests to recognize SARS-CoV-2 from Indonesia, other five continents, as well as five VOCs, including the new Omicron sub-variant.","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"55 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43141-023-00580-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has highlighted the importance of tracking cases by using various methods such as the Reverse transcription loop-mediated isothermal amplification (RT-LAMP) which is a fast, simple, inexpensive, and accurate mass tracker. However, there have been no reports about the development of RT-LAMP primer designs that use genome sequences of viruses from Indonesia. Therefore, this study aimed to design an RT-LAMP primer using SARS-CoV-2 genome sequences from Indonesia and several other countries representing five continents in the world, as well as genomes from five Variants of Concern (VOC). The results showed that the consensus sequence of 70 SARS-CoV-2 virus sequences was obtained with a length of 29,982 bases. The phylogenetic test confirmed that the consensus sequence had a close kinship with the SARS-CoV-2 Wuhan Isolate. Furthermore, the SimPlot analysis showed that there was a high genetic diversity of sequences from the Coronaviridae tribal virus at base sequences of 1,500–5,000, 6,500–7,500, and 23,300–25,500. A total of 139 sets of primers were obtained from the primer design with 4 sets namely T1_6, T1_9, T4_7, and T4_52 having the best characteristics. Based on the secondary structure analysis test on 4 sets of primers, T1_6 and T1_9 were predicted not to form secondary structures at RT-LAMP operational temperatures. The primer set T1_9 showed better specificity in BLAST NCBI and eLAMP BLAST tests. This study obtained a primer set of T1_9 with base sequence F3: CACTGAGACTCATTGATGCTATG, B3: CCAACCGTCTCTAAGAAACTCT, F2: GTTCACATCTGATTTGGCTACT, F1c: GAAGTCAACTGAACAACACCACCT, B2: CCTTCCTTAAACTTCTCTTCAAGC, B1c: GTGGCTAACTAACATCTTTGGCACT, LB: TGAAAACAAACCCGCCGTCCTTG, which meets the ideal parameters and has the best specificity. Therefore, it is recommended for use in further tests to recognize SARS-CoV-2 from Indonesia, other five continents, as well as five VOCs, including the new Omicron sub-variant.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts