Deep Cliques in Point Sets

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Discrete & Computational Geometry Pub Date : 2023-12-18 DOI:10.1007/s00454-023-00612-y
Stefan Langerman, Marcelo Mydlarz, Emo Welzl
{"title":"Deep Cliques in Point Sets","authors":"Stefan Langerman, Marcelo Mydlarz, Emo Welzl","doi":"10.1007/s00454-023-00612-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(n \\in \\mathbb {N}\\)</span> and <span>\\(k \\in \\mathbb {N}_0\\)</span>. Given a set <i>P</i> of <i>n</i> points in the plane, a pair <span>\\(\\{p,q\\}\\)</span> of points in <i>P</i> is called <i>k</i>-<i>deep</i>, if there are at least <i>k</i> points from <i>P</i> strictly on each side of the line spanned by <i>p</i> and <i>q</i>. A <i>k</i>-<i>deep clique</i> is a subset of <i>P</i> with all its pairs <i>k</i>-<i>deep</i>. We show that if <i>P</i> is in general position (i.e., no three points on a line), there is a <i>k</i>-deep clique of size at least <span>\\( \\max \\{1,\\lfloor \\frac{n}{k+1} \\rfloor \\}\\)</span>; this is tight, for example in convex position. A <i>k</i>-deep clique in any set <i>P</i> of <i>n</i> points cannot have size exceeding <span>\\(n-\\lceil \\frac{3k}{2} \\rceil \\)</span>; this is tight for <span>\\(k \\le \\frac{n}{3}\\)</span>. Moreover, for <span>\\(k \\le \\lfloor \\frac{n}{2} \\rfloor - 1\\)</span>, a <i>k</i>-deep clique cannot have size exceeding <span>\\(2\\sqrt{n(\\lfloor \\frac{n}{2} \\rfloor -k)}\\)</span>; this is tight within a constant factor. We also pay special attention to <span>\\((\\frac{n}{2}-1)\\)</span>-deep cliques (for <i>n</i> even), which are called <i>halving cliques</i>. These have been considered in the literature by Khovanova and Yang, 2012, and they play a role in the latter bound above. Every set <i>P</i> in general position with a halving clique <i>Q</i> of size <i>m</i> must have at least <span>\\(\\lfloor \\frac{(m-1)(m+3)}{2}\\rfloor \\)</span> points. If <i>Q</i> is in convex position, the set <i>P</i> must have size at least <span>\\(m(m-1)\\)</span>. This is tight, i.e., there are sets <span>\\(Q_m\\)</span> of <i>m</i> points in convex position which can be extended to a set of <span>\\(m(m-1)\\)</span> points where <span>\\(Q_m\\)</span> is a halving clique. Interestingly, this is not the case for all sets <i>Q</i> in convex position (even if parallel connecting lines among point pairs in <i>Q</i> are excluded).</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00612-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(n \in \mathbb {N}\) and \(k \in \mathbb {N}_0\). Given a set P of n points in the plane, a pair \(\{p,q\}\) of points in P is called k-deep, if there are at least k points from P strictly on each side of the line spanned by p and q. A k-deep clique is a subset of P with all its pairs k-deep. We show that if P is in general position (i.e., no three points on a line), there is a k-deep clique of size at least \( \max \{1,\lfloor \frac{n}{k+1} \rfloor \}\); this is tight, for example in convex position. A k-deep clique in any set P of n points cannot have size exceeding \(n-\lceil \frac{3k}{2} \rceil \); this is tight for \(k \le \frac{n}{3}\). Moreover, for \(k \le \lfloor \frac{n}{2} \rfloor - 1\), a k-deep clique cannot have size exceeding \(2\sqrt{n(\lfloor \frac{n}{2} \rfloor -k)}\); this is tight within a constant factor. We also pay special attention to \((\frac{n}{2}-1)\)-deep cliques (for n even), which are called halving cliques. These have been considered in the literature by Khovanova and Yang, 2012, and they play a role in the latter bound above. Every set P in general position with a halving clique Q of size m must have at least \(\lfloor \frac{(m-1)(m+3)}{2}\rfloor \) points. If Q is in convex position, the set P must have size at least \(m(m-1)\). This is tight, i.e., there are sets \(Q_m\) of m points in convex position which can be extended to a set of \(m(m-1)\) points where \(Q_m\) is a halving clique. Interestingly, this is not the case for all sets Q in convex position (even if parallel connecting lines among point pairs in Q are excluded).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点集合中的深度聚类
让 \(n \in \mathbb {N}\) 和 \(k \in \mathbb {N}_0\).给定平面中由 n 个点组成的集合 P,如果 P 中至少有 k 个点严格地位于 p 和 q 所跨直线的两侧,那么 P 中的一对点 \(\{p,q\}/)称为 k 深度。我们证明,如果 P 处于一般位置(即没有三个点在一条直线上),那么至少有一个大小为 \( \max \{1,\lfloor \frac{n}{k+1} \rfloor \})的 k 深度小群;这是紧密的,例如在凸位置中。在任何由 n 个点组成的集合 P 中,一个深度为 k 的小集团的大小不能超过 \(n-\lceil \frac{3k}{2} \rceil \);这对于 \(k \le \frac{n}{3}\) 是紧密的。此外,对于 (k \le \lfloor \frac{n}{2} \rfloor -1),一个 k 深的小集团的大小不能超过 (2(sqrt{n(\lfloor \frac{n}{2} \rfloor -k)});这在一个常数因子内是紧密的。我们还特别关注 \((\frac{n}{2}-1)\)-deep cliques(对于偶数 n),它们被称为减半 cliques。Khovanova 和 Yang 在 2012 年的文献中考虑了这些问题,它们在上述后一约束中发挥了作用。在一般位置中,每个具有大小为 m 的减半小群 Q 的集合 P 必须至少有 \(\lfloor \frac{(m-1)(m+3)}{2}\rfloor \) 个点。如果 Q 处于凸位置,那么集合 P 的大小必须至少是 \(m(m-1)\)。这是很严格的,也就是说,有 m 个凸位置点的集\(Q_m\) 可以扩展为一个由 \(m(m-1)\) 个点组成的集,其中 \(Q_m\) 是一个减半小块。有趣的是,这并不是所有凸位置集合 Q 的情况(即使排除了 Q 中点对之间的平行连线)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
期刊最新文献
The Complexity of Order Type Isomorphism Volume Computation for Meissner Polyhedra and Applications Erdős–Szekeres-Type Problems in the Real Projective Plane The Structure of Metrizable Graphs Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1