{"title":"A Power Factor Corrector Boost Converter Based Memristor Emulator","authors":"Ahmet Güloğlu, Şuayb Çağrı Yener, Reşat Mutlu","doi":"10.1007/s40998-023-00679-6","DOIUrl":null,"url":null,"abstract":"<p>Analog and digital circuits are used to make memristor emulators. Power electronics circuits use switching to obtain the desired waveforms. A single-phase power factor corrector circuit is a well-known power electronics circuit. This study shows that a single-phase power factor corrector circuit can be used as a memristor emulator. To the best of our knowledge, there is no memristor emulator circuit made in this way in literature yet. This circuit employs a boost converter placed after the full-wave bridge rectifier. The power switch of the converter is controlled to obtain the desired memristive behavior by a microcontroller, STM32F429ZIT6. The circuit operation is examined using simulations and experiments. Also, a comparison is given between the proposed emulator and the other memristor emulators in the literature. Although the proposed emulator is able to emulate different memristor models described with varying window functions, only the results of the Biolek model are given due to space considerations. The circuit performs well and can easily emulate other memristor models after modification of its firmware for their window functions.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-023-00679-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Analog and digital circuits are used to make memristor emulators. Power electronics circuits use switching to obtain the desired waveforms. A single-phase power factor corrector circuit is a well-known power electronics circuit. This study shows that a single-phase power factor corrector circuit can be used as a memristor emulator. To the best of our knowledge, there is no memristor emulator circuit made in this way in literature yet. This circuit employs a boost converter placed after the full-wave bridge rectifier. The power switch of the converter is controlled to obtain the desired memristive behavior by a microcontroller, STM32F429ZIT6. The circuit operation is examined using simulations and experiments. Also, a comparison is given between the proposed emulator and the other memristor emulators in the literature. Although the proposed emulator is able to emulate different memristor models described with varying window functions, only the results of the Biolek model are given due to space considerations. The circuit performs well and can easily emulate other memristor models after modification of its firmware for their window functions.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.