$$\cal{Y}$$ -Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2023-12-18 DOI:10.1007/s11704-023-3131-8
Yitao Liu, Chenxin An, Xipeng Qiu
{"title":"$$\\cal{Y}$$ -Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning","authors":"Yitao Liu, Chenxin An, Xipeng Qiu","doi":"10.1007/s11704-023-3131-8","DOIUrl":null,"url":null,"abstract":"<p>With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose <span>\\(\\cal{Y}\\)</span>-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. <span>\\(\\cal{Y}\\)</span>-Tuning learns dense representations for labels <span>\\(\\cal{Y}\\)</span> defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, <span>\\(\\cal{Y}\\)</span>-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTa<sub>XXL</sub> with 1.6 billion parameters, <span>\\(\\cal{Y}\\)</span>-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"38 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-3131-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose \(\cal{Y}\)-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. \(\cal{Y}\)-Tuning learns dense representations for labels \(\cal{Y}\) defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, \(\cal{Y}\)-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTaXXL with 1.6 billion parameters, \(\cal{Y}\)-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$$cal{Y}$ -Tuning:通过标签表示学习对大规模预训练模型进行高效调整的范例
随着目前大规模预训练模型(PTM)的成功,如何有效地调整 PTM 以适应下游任务引起了极大的关注,尤其是对于拥有数十亿参数的 PTM。以往的工作主要集中在设计参数高效的调整范式,但需要保存和计算整个计算图的梯度。在本文中,我们提出了 \(\cal{Y}\)-Tuning 这一高效而有效的范式,用于使冻结的大规模 PTM 适应特定的下游任务。\(\cal{Y}\)-Tuning学习在给定任务中定义的标签的密集表示,并将它们与固定的特征表示对齐。由于不需要在训练短语中计算文本编码器的梯度,\(\cal{Y}\)-Tuning 不仅参数效率高,而且训练效率也很高。实验结果表明,对于拥有 16 亿个参数的 DeBERTaXXL,\(\cal{Y}\)-Tuning 只需 2% 的可调参数和更少的训练成本,就能在 GLUE Benchmark 上实现超过 96% 的完全微调性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model SEOE: an option graph based semantically embedding method for prenatal depression detection FedTop: a constraint-loosed federated learning aggregation method against poisoning attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1