Coupled-driven high-speed and high-torque switchable transmission with a large transmission ratio

IF 1.5 Q3 INSTRUMENTS & INSTRUMENTATION ROBOMECH Journal Pub Date : 2023-12-19 DOI:10.1186/s40648-023-00269-5
Toshio Takayama, Masaki Waragai
{"title":"Coupled-driven high-speed and high-torque switchable transmission with a large transmission ratio","authors":"Toshio Takayama, Masaki Waragai","doi":"10.1186/s40648-023-00269-5","DOIUrl":null,"url":null,"abstract":"Electric motors are used globally, especially in industrial applications, and achieving high energy efficiency is a major problem. Variable transmissions are effective in reducing the energy consumption of motors, but practical variable transmissions are bulky and heavy, making them unsuitable for robots. To overcome this problem, two motor-driven mechanisms have been proposed. The two motors are operated independently and assigned to the high-speed drive and high-torque drive, and one motor always becomes dead weight. Therefore, we propose a coupled-driven switchable transmission system that can switch the high-speed and high-torque drives by combining the rotation directions and utilizing the output of both motors. The developed device uses two 22-W motors and can switch the reduction ratio from 1/15 to 1/375. The maximum torque, maximum rotation speed, and weight are 10 Nm, 500 rpm, and 905 g, respectively. The experimental results show that the relative speeds of two motors are significant for the coupled drive; nevertheless, this device can be controlled by conventional voltage control without precise speed control.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-023-00269-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Electric motors are used globally, especially in industrial applications, and achieving high energy efficiency is a major problem. Variable transmissions are effective in reducing the energy consumption of motors, but practical variable transmissions are bulky and heavy, making them unsuitable for robots. To overcome this problem, two motor-driven mechanisms have been proposed. The two motors are operated independently and assigned to the high-speed drive and high-torque drive, and one motor always becomes dead weight. Therefore, we propose a coupled-driven switchable transmission system that can switch the high-speed and high-torque drives by combining the rotation directions and utilizing the output of both motors. The developed device uses two 22-W motors and can switch the reduction ratio from 1/15 to 1/375. The maximum torque, maximum rotation speed, and weight are 10 Nm, 500 rpm, and 905 g, respectively. The experimental results show that the relative speeds of two motors are significant for the coupled drive; nevertheless, this device can be controlled by conventional voltage control without precise speed control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大传动比耦合驱动高速高扭矩可切换变速器
全球都在使用电机,尤其是在工业应用中,实现高能效是一个主要问题。可变传动装置能有效降低电机的能耗,但实用的可变传动装置体积大、重量重,不适合机器人使用。为了克服这一问题,我们提出了两个电机驱动机构。两台电机独立运行,分别分配给高速驱动和高扭矩驱动,其中一台电机总是成为自重。因此,我们提出了一种耦合驱动的可切换传动系统,该系统可通过组合旋转方向和利用两个电机的输出来切换高速驱动和高扭矩驱动。所开发的装置使用两个 22 瓦电机,可在 1/15 到 1/375 之间切换减速比。最大扭矩、最高转速和重量分别为 10 牛米、500 转/分和 905 克。实验结果表明,两台电机的相对速度对耦合驱动非常重要;不过,该装置可以通过传统的电压控制进行控制,而无需精确的速度控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ROBOMECH Journal
ROBOMECH Journal Mathematics-Control and Optimization
CiteScore
3.20
自引率
7.10%
发文量
21
审稿时长
13 weeks
期刊介绍: ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications
期刊最新文献
Computer vision-based visualization and quantification of body skeletal movements for investigation of traditional skills: the production of Kizumi winnowing baskets Measuring unit for synchronously collecting air dose rate and measurement position Analysis of convection flow of a self-propelled alcohol droplet in an exoskeleton frame Origami manipulation by robot hand utilizing electroadhesion Length control of a McKibben pneumatic actuator using a dynamic quantizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1