Implementation of a scalable platform for real-time monitoring of machine tools

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers in Industry Pub Date : 2023-12-19 DOI:10.1016/j.compind.2023.104065
Endika Tapia , Unai Lopez-Novoa , Leonardo Sastoque-Pinilla , Luis Norberto López-de-Lacalle
{"title":"Implementation of a scalable platform for real-time monitoring of machine tools","authors":"Endika Tapia ,&nbsp;Unai Lopez-Novoa ,&nbsp;Leonardo Sastoque-Pinilla ,&nbsp;Luis Norberto López-de-Lacalle","doi":"10.1016/j.compind.2023.104065","DOIUrl":null,"url":null,"abstract":"<div><p>In the new hyper connected factories, data gathering, and prediction models are key to keeping both productivity and piece quality. This paper presents a software platform that monitors and detects outliers in an industrial manufacturing process using scalable software tools. The platform collects data from a machine, processes it, and displays visualizations in a dashboard along with the results. A statistical method is used to detect outliers in the manufacturing process. The performance of the platform is assessed in two ways: firstly by monitoring a five-axis milling machine and secondly, using simulated tests. Former tests prove the suitability of the platform and reveal the issues that arise in a real environment, and latter tests prove the scalability of the platform with higher data processing needs than the previous ones.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"155 ","pages":"Article 104065"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166361523002154/pdfft?md5=075be02aa14bfe05041d47bded655429&pid=1-s2.0-S0166361523002154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361523002154","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the new hyper connected factories, data gathering, and prediction models are key to keeping both productivity and piece quality. This paper presents a software platform that monitors and detects outliers in an industrial manufacturing process using scalable software tools. The platform collects data from a machine, processes it, and displays visualizations in a dashboard along with the results. A statistical method is used to detect outliers in the manufacturing process. The performance of the platform is assessed in two ways: firstly by monitoring a five-axis milling machine and secondly, using simulated tests. Former tests prove the suitability of the platform and reveal the issues that arise in a real environment, and latter tests prove the scalability of the platform with higher data processing needs than the previous ones.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实施可扩展的机床实时监控平台
在新的超级互联工厂中,数据收集和预测模型是保持生产率和产品质量的关键。本文介绍了一个软件平台,该平台利用可扩展的软件工具监控和检测工业生产过程中的异常值。该平台从机器中收集数据,进行处理,并在仪表板中显示可视化结果。统计方法用于检测制造过程中的异常值。该平台的性能通过两种方式进行评估:首先是监控五轴铣床,其次是模拟测试。前一种测试证明了平台的适用性,并揭示了在真实环境中出现的问题;后一种测试证明了平台的可扩展性,其数据处理需求高于前一种测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
期刊最新文献
Wasserstein distributionally robust learning for predicting the cycle time of printed circuit board production BRepQL: Query language for searching topological elements in B-rep models A Comparative Study of Handheld Augmented Reality Interaction Techniques for Developing AR Instructions using AR Authoring Tools Discovering data spaces: A classification of design options Evaluating the noise tolerance of Cloud NLP services across Amazon, Microsoft, and Google
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1