Lena Schmidt, Saleh Mohamed, Nick Meader, Jaume Bacardit, Dawn Craig
{"title":"Automated data analysis of unstructured grey literature in health research: A mapping review","authors":"Lena Schmidt, Saleh Mohamed, Nick Meader, Jaume Bacardit, Dawn Craig","doi":"10.1002/jrsm.1692","DOIUrl":null,"url":null,"abstract":"<p>The amount of grey literature and ‘softer’ intelligence from social media or websites is vast. Given the long lead-times of producing high-quality peer-reviewed health information, this is causing a demand for new ways to provide prompt input for secondary research. To our knowledge, this is the first review of automated data extraction methods or tools for health-related grey literature and soft data, with a focus on (semi)automating horizon scans, health technology assessments (HTA), evidence maps, or other literature reviews. We searched six databases to cover both health- and computer-science literature. After deduplication, 10% of the search results were screened by two reviewers, the remainder was single-screened up to an estimated 95% sensitivity; screening was stopped early after screening an additional 1000 results with no new includes. All full texts were retrieved, screened, and extracted by a single reviewer and 10% were checked in duplicate. We included 84 papers covering automation for health-related social media, internet fora, news, patents, government agencies and charities, or trial registers. From each paper, we extracted data about important functionalities for users of the tool or method; information about the level of support and reliability; and about practical challenges and research gaps. Poor availability of code, data, and usable tools leads to low transparency regarding performance and duplication of work. Financial implications, scalability, integration into downstream workflows, and meaningful evaluations should be carefully planned before starting to develop a tool, given the vast amounts of data and opportunities those tools offer to expedite research.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1692","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1692","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The amount of grey literature and ‘softer’ intelligence from social media or websites is vast. Given the long lead-times of producing high-quality peer-reviewed health information, this is causing a demand for new ways to provide prompt input for secondary research. To our knowledge, this is the first review of automated data extraction methods or tools for health-related grey literature and soft data, with a focus on (semi)automating horizon scans, health technology assessments (HTA), evidence maps, or other literature reviews. We searched six databases to cover both health- and computer-science literature. After deduplication, 10% of the search results were screened by two reviewers, the remainder was single-screened up to an estimated 95% sensitivity; screening was stopped early after screening an additional 1000 results with no new includes. All full texts were retrieved, screened, and extracted by a single reviewer and 10% were checked in duplicate. We included 84 papers covering automation for health-related social media, internet fora, news, patents, government agencies and charities, or trial registers. From each paper, we extracted data about important functionalities for users of the tool or method; information about the level of support and reliability; and about practical challenges and research gaps. Poor availability of code, data, and usable tools leads to low transparency regarding performance and duplication of work. Financial implications, scalability, integration into downstream workflows, and meaningful evaluations should be carefully planned before starting to develop a tool, given the vast amounts of data and opportunities those tools offer to expedite research.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.