Jirong Wang, Lan Chai, Ying Tang, Guofu Wang, Yizhong Bao, Bo Ma
{"title":"MicroRNA-322 Attenuates Cartilage Matrix Degradation in Osteoarthritis via Direct Suppression of TRAF3.","authors":"Jirong Wang, Lan Chai, Ying Tang, Guofu Wang, Yizhong Bao, Bo Ma","doi":"10.1177/19476035231213207","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Osteoarthritis (OA) is a degenerative joint disease. A growing number of studies have shown that microRNAs (miRNAs) play an important role in the pathogenesis of OA. However, the specific function of miR-322 in OA is unknown. This study was aimed to explore the ability of miR-322 in the cartilage matrix degradation and the mechanism in OA.</p><p><strong>Methods: </strong>Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect miR-322 expression in cartilage and OA-associated gene expression in chondrocytes treated with miR-322 mimics/inhibitors or interleukin (IL)-1β, respectively. The targets of miR-322 were analyzed using software and the luciferase reporter experiment. <i>In vivo</i>, intra-articular injection of miR-322 mimics was administered at the knee of DMM mice. After 12 weeks, the knee joints of mice were collected for histological analysis.</p><p><strong>Results: </strong>The expression of miR-322 was decreased in knee cartilage of DMM mice and was significantly reduced by IL-1β. miR-322 mimics inhibited IL-1β-induced extracellular matrix degradation, as evidenced by higher expression of Col2α1 and Aggrecan, and lower expression of Adamts5, MMP3, and MMP13. In contrast, miR-322 inhibitor promoted extracellular matrix degradation of chondrocytes. TRAF3 was the predicted target of miR-322 from databases. Luciferase reporter assay verified the targeting relationship between miR-322 and TRAF3. The effect of miR-322 on extracellular matrix degradation was partially reversed by overexpression of TRAF3. In addition, H&E and Safranin-O fast green staining assays in OA mouse models showed that miR-322 mimics attenuated the progression of OA <i>in vivo</i>.</p><p><strong>Conclusions: </strong>miR-322 suppressed chondrocytes matrix degradation and alleviated OA cartilage injury via inhibition of the TRAF3.</p>","PeriodicalId":9626,"journal":{"name":"CARTILAGE","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CARTILAGE","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19476035231213207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Osteoarthritis (OA) is a degenerative joint disease. A growing number of studies have shown that microRNAs (miRNAs) play an important role in the pathogenesis of OA. However, the specific function of miR-322 in OA is unknown. This study was aimed to explore the ability of miR-322 in the cartilage matrix degradation and the mechanism in OA.
Methods: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect miR-322 expression in cartilage and OA-associated gene expression in chondrocytes treated with miR-322 mimics/inhibitors or interleukin (IL)-1β, respectively. The targets of miR-322 were analyzed using software and the luciferase reporter experiment. In vivo, intra-articular injection of miR-322 mimics was administered at the knee of DMM mice. After 12 weeks, the knee joints of mice were collected for histological analysis.
Results: The expression of miR-322 was decreased in knee cartilage of DMM mice and was significantly reduced by IL-1β. miR-322 mimics inhibited IL-1β-induced extracellular matrix degradation, as evidenced by higher expression of Col2α1 and Aggrecan, and lower expression of Adamts5, MMP3, and MMP13. In contrast, miR-322 inhibitor promoted extracellular matrix degradation of chondrocytes. TRAF3 was the predicted target of miR-322 from databases. Luciferase reporter assay verified the targeting relationship between miR-322 and TRAF3. The effect of miR-322 on extracellular matrix degradation was partially reversed by overexpression of TRAF3. In addition, H&E and Safranin-O fast green staining assays in OA mouse models showed that miR-322 mimics attenuated the progression of OA in vivo.
Conclusions: miR-322 suppressed chondrocytes matrix degradation and alleviated OA cartilage injury via inhibition of the TRAF3.
期刊介绍:
CARTILAGE publishes articles related to the musculoskeletal system with particular attention to cartilage repair, development, function, degeneration, transplantation, and rehabilitation. The journal is a forum for the exchange of ideas for the many types of researchers and clinicians involved in cartilage biology and repair. A primary objective of CARTILAGE is to foster the cross-fertilization of the findings between clinical and basic sciences throughout the various disciplines involved in cartilage repair.
The journal publishes full length original manuscripts on all types of cartilage including articular, nasal, auricular, tracheal/bronchial, and intervertebral disc fibrocartilage. Manuscripts on clinical and laboratory research are welcome. Review articles, editorials, and letters are also encouraged. The ICRS envisages CARTILAGE as a forum for the exchange of knowledge among clinicians, scientists, patients, and researchers.
The International Cartilage Repair Society (ICRS) is dedicated to promotion, encouragement, and distribution of fundamental and applied research of cartilage in order to permit a better knowledge of function and dysfunction of articular cartilage and its repair.