{"title":"Exploring the Close-Range Detection of UAV-Based Images on Pine Wilt Disease by an Improved Deep Learning Method.","authors":"Xinquan Ye, Jie Pan, Gaosheng Liu, Fan Shao","doi":"10.34133/plantphenomics.0129","DOIUrl":null,"url":null,"abstract":"<p><p>Pine wilt disease (PWD) is a significantly destructive forest disease. To control the spread of PWD, an urgent need exists for a real-time and efficient method to detect infected trees. However, existing object detection models have often faced challenges in balancing lightweight design and accuracy, particularly in complex mixed forests. To address this, an improvement was made to the YOLOv5s (You Only Look Once version 5s) algorithm, resulting in a real-time and efficient model named PWD-YOLO. First, a lightweight backbone was constructed, composed of multiple connected RepVGG Blocks, significantly enhancing the model's inference speed. Second, a C2fCA module was designed to incorporate rich gradient information flow and concentrate on key features, thereby preserving more detailed characteristics of PWD-infected trees. In addition, the GSConv network was utilized instead of conventional convolutions to reduce network complexity. Last, the Bidirectional Feature Pyramid Network strategy was used to enhance the propagation and sharing of multiscale features. The results demonstrate that on a self-built dataset, PWD-YOLO surpasses existing object detection models with respective measurements of model size (2.7 MB), computational complexity (3.5 GFLOPs), parameter volume (1.09 MB), and speed (98.0 frames/s). The Precision, Recall, and F1-score on the test set are 92.5%, 95.3%, and 93.9%, respectively, which confirms the effectiveness of the proposed method. It provides reliable technical support for daily monitoring and clearing of infected trees by forestry management departments.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0129"},"PeriodicalIF":7.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723834/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0129","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Pine wilt disease (PWD) is a significantly destructive forest disease. To control the spread of PWD, an urgent need exists for a real-time and efficient method to detect infected trees. However, existing object detection models have often faced challenges in balancing lightweight design and accuracy, particularly in complex mixed forests. To address this, an improvement was made to the YOLOv5s (You Only Look Once version 5s) algorithm, resulting in a real-time and efficient model named PWD-YOLO. First, a lightweight backbone was constructed, composed of multiple connected RepVGG Blocks, significantly enhancing the model's inference speed. Second, a C2fCA module was designed to incorporate rich gradient information flow and concentrate on key features, thereby preserving more detailed characteristics of PWD-infected trees. In addition, the GSConv network was utilized instead of conventional convolutions to reduce network complexity. Last, the Bidirectional Feature Pyramid Network strategy was used to enhance the propagation and sharing of multiscale features. The results demonstrate that on a self-built dataset, PWD-YOLO surpasses existing object detection models with respective measurements of model size (2.7 MB), computational complexity (3.5 GFLOPs), parameter volume (1.09 MB), and speed (98.0 frames/s). The Precision, Recall, and F1-score on the test set are 92.5%, 95.3%, and 93.9%, respectively, which confirms the effectiveness of the proposed method. It provides reliable technical support for daily monitoring and clearing of infected trees by forestry management departments.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.