De novo drug designing coupled with brute force screening and structure guided lead optimization gives highly specific inhibitor of METTL3: a potential cure for Acute Myeloid Leukaemia.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2025-02-01 Epub Date: 2023-12-09 DOI:10.1080/07391102.2023.2291162
Manisha Ganguly, Radhika Gupta, Amlan Roychowdhury, Ditipriya Hazra
{"title":"De novo drug designing coupled with brute force screening and structure guided lead optimization gives highly specific inhibitor of METTL3: a potential cure for Acute Myeloid Leukaemia.","authors":"Manisha Ganguly, Radhika Gupta, Amlan Roychowdhury, Ditipriya Hazra","doi":"10.1080/07391102.2023.2291162","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of METTL3, a SAM dependent methyltransferase, which deposits m6A on mRNA is linked to poor prognosis in Acute Myeloid Leukaemia and other type of cancers. Down regulation of this epitranscriptomic regulator has been found to inhibit cancer progression. Silencing the methyltransferase activity of METTL3 is a lucrative strategy to design anticancer drugs. In this study 3600 commercially available molecules were screened against METTL3 using brute force screening approach. However, none of these compounds take advantage of the unique Y-shaped binding cavity of the protein, raising the need for de novo drug designing strategies. As such, 125 branched, Y-shaped molecules were designed by \"stitching\" together the chemical fragments of the best inhibitors that interact strongly with the METTL3 binding pocket. This results in molecules that have the three-dimensional structure and functional groups which enable it to fit in the METTL3 cavity like fingers in a glove, having unprecedented selectivity and binding affinities. The designed compounds were further refined based on Lipinski's rule, docking score and synthetic accessibility. The molecules faring well in these criteria were simulated for 100 ns to check the stability of the protein inhibitor complex followed by binding free energy calculation.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1038-1051"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2291162","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Expression of METTL3, a SAM dependent methyltransferase, which deposits m6A on mRNA is linked to poor prognosis in Acute Myeloid Leukaemia and other type of cancers. Down regulation of this epitranscriptomic regulator has been found to inhibit cancer progression. Silencing the methyltransferase activity of METTL3 is a lucrative strategy to design anticancer drugs. In this study 3600 commercially available molecules were screened against METTL3 using brute force screening approach. However, none of these compounds take advantage of the unique Y-shaped binding cavity of the protein, raising the need for de novo drug designing strategies. As such, 125 branched, Y-shaped molecules were designed by "stitching" together the chemical fragments of the best inhibitors that interact strongly with the METTL3 binding pocket. This results in molecules that have the three-dimensional structure and functional groups which enable it to fit in the METTL3 cavity like fingers in a glove, having unprecedented selectivity and binding affinities. The designed compounds were further refined based on Lipinski's rule, docking score and synthetic accessibility. The molecules faring well in these criteria were simulated for 100 ns to check the stability of the protein inhibitor complex followed by binding free energy calculation.Communicated by Ramaswamy H. Sarma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新药设计加上暴力筛选和结构引导的先导优化,产生了高度特异性的 METTL3 抑制剂:有望治愈急性髓性白血病。
METTL3 是一种依赖于 SAM 的甲基转移酶,可在 mRNA 上沉积 m6A,它的表达与急性髓性白血病和其他类型癌症的不良预后有关。研究发现,下调这种表转录调节因子可抑制癌症进展。抑制 METTL3 的甲基转移酶活性是设计抗癌药物的一个有利可图的策略。在这项研究中,采用暴力筛选法筛选了 3600 种针对 METTL3 的市售分子。然而,这些化合物都没有利用该蛋白独特的 Y 型结合腔,因此需要采用全新的药物设计策略。因此,通过 "拼接 "与 METTL3 结合腔有强烈相互作用的最佳抑制剂的化学片段,设计出了 125 种支化的 Y 型分子。这样设计出的分子具有三维结构和功能基团,能像手套中的手指一样嵌入 METTL3 的空腔,具有前所未有的选择性和结合亲和力。根据利宾斯基法则、对接得分和合成可得性,对设计的化合物进行了进一步的改进。对符合这些标准的分子进行了 100 ns 的模拟,以检查蛋白质抑制剂复合物的稳定性,然后计算结合自由能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
In vitro and in silico guided identification of antimalarial phytoconstituent(s) in the root of Citrus maxima (Burm.) Merr. Identification of synthetically tractable MERS-CoV main protease inhibitors using structure-based virtual screening and molecular dynamics potential of mean force (PMF) calculations. Accelerated molecular dynamics study to compare the thermostability of Bacillus licheniformis and Aspergillus niger α-amylase. Albumin from sera of rheumatoid arthritis patients share multiple biochemical, biophysical and immunological properties with in vitro generated glyco-nitro-oxidized-albumin. An attention 3DUNET and visual geometry group-19 based deep neural network for brain tumor segmentation and classification from MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1