Leveraging immunoinformatics for developing a multi-epitope subunit vaccine against Helicobacter pylori and Fusobacterium nucleatum.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2025-02-01 Epub Date: 2023-12-20 DOI:10.1080/07391102.2023.2292295
Tanjin Tamanna, Md Shahedur Rahman
{"title":"Leveraging immunoinformatics for developing a multi-epitope subunit vaccine against <i>Helicobacter pylori</i> and <i>Fusobacterium nucleatum</i>.","authors":"Tanjin Tamanna, Md Shahedur Rahman","doi":"10.1080/07391102.2023.2292295","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric ulcers caused by <i>Helicobacter pylori</i> and <i>Fusobacterium nucleatum</i> remain a significant global health concern without an established vaccine. In this study, we utilized immunoinformatics methods to design a multi-epitope vaccine targeting these pathogens. Outer membrane proteins from <i>H. pylori</i> and <i>F. nucleatum</i> were scrutinized to identify high antigenic T-cell and B-cell epitopes. The resulting vaccine comprised carefully analyzed and evaluated epitopes, including cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocytes epitopes. This vaccine exhibited notable antigenicity, suitable immunogenicity, and demonstrated non-allergenicity and non-toxicity. It displayed favorable physiochemical characteristics and high solubility. In interaction studies, the vaccine exhibited robust binding to toll-like receptor 4 (TLR4). Molecular dynamic simulations revealed cohesive structural integrity and stable attachment. Codon adaptation utilizing <i>Escherichia coli</i> K12 host yielded a vaccine with elevated Codon Adaptation Index (CAI) and optimal GC content. <i>In silico</i> cloning into the pET28+(a) vector demonstrated efficient expression. Immune simulations indicated the vaccine's ability to initiate immune responses in humans, mirroring real-life scenarios. Based on these comprehensive findings, we propose that our developed vaccine has the potential to confer robust immunity against <i>H. pylori</i> and <i>F. nucleatum</i> infections.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1552-1565"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2292295","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric ulcers caused by Helicobacter pylori and Fusobacterium nucleatum remain a significant global health concern without an established vaccine. In this study, we utilized immunoinformatics methods to design a multi-epitope vaccine targeting these pathogens. Outer membrane proteins from H. pylori and F. nucleatum were scrutinized to identify high antigenic T-cell and B-cell epitopes. The resulting vaccine comprised carefully analyzed and evaluated epitopes, including cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocytes epitopes. This vaccine exhibited notable antigenicity, suitable immunogenicity, and demonstrated non-allergenicity and non-toxicity. It displayed favorable physiochemical characteristics and high solubility. In interaction studies, the vaccine exhibited robust binding to toll-like receptor 4 (TLR4). Molecular dynamic simulations revealed cohesive structural integrity and stable attachment. Codon adaptation utilizing Escherichia coli K12 host yielded a vaccine with elevated Codon Adaptation Index (CAI) and optimal GC content. In silico cloning into the pET28+(a) vector demonstrated efficient expression. Immune simulations indicated the vaccine's ability to initiate immune responses in humans, mirroring real-life scenarios. Based on these comprehensive findings, we propose that our developed vaccine has the potential to confer robust immunity against H. pylori and F. nucleatum infections.Communicated by Ramaswamy H. Sarma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用免疫信息学开发针对幽门螺旋杆菌和核酸镰刀菌的多表位亚单位疫苗。
幽门螺杆菌和核酸镰刀菌引起的胃溃疡仍然是全球健康的一个重大问题,但目前还没有成熟的疫苗。在这项研究中,我们利用免疫信息学方法设计了一种针对这些病原体的多表位疫苗。我们仔细研究了幽门螺杆菌和核酸酵母菌的外膜蛋白,以确定高抗原性的 T 细胞和 B 细胞表位。由此产生的疫苗由经过仔细分析和评估的表位组成,包括细胞毒性 T 淋巴细胞、辅助性 T 淋巴细胞和线性 B 淋巴细胞表位。该疫苗具有显著的抗原性和适当的免疫原性,并表现出无过敏性和无毒性。它具有良好的理化特性和高溶解性。在相互作用研究中,该疫苗表现出与收费样受体 4 (TLR4) 强有力的结合。分子动力学模拟显示了内聚结构的完整性和稳定的附着性。利用大肠杆菌 K12 宿主进行密码子适配,得到了密码子适配指数(CAI)较高、GC 含量最佳的疫苗。硅克隆到 pET28+(a)载体中的结果表明了疫苗的高效表达。免疫模拟结果表明,该疫苗能够启动人体免疫反应,反映了现实生活中的情况。基于这些综合研究结果,我们认为我们开发的疫苗有可能对幽门螺杆菌和核酸酵母菌感染产生强大的免疫力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
In vitro and in silico guided identification of antimalarial phytoconstituent(s) in the root of Citrus maxima (Burm.) Merr. Identification of synthetically tractable MERS-CoV main protease inhibitors using structure-based virtual screening and molecular dynamics potential of mean force (PMF) calculations. Accelerated molecular dynamics study to compare the thermostability of Bacillus licheniformis and Aspergillus niger α-amylase. Albumin from sera of rheumatoid arthritis patients share multiple biochemical, biophysical and immunological properties with in vitro generated glyco-nitro-oxidized-albumin. An attention 3DUNET and visual geometry group-19 based deep neural network for brain tumor segmentation and classification from MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1