Improvement of ɣ-Aminobutyric Acid Production and Cell Viability of Lactiplantibacillus plantarum B7 via Whole-Cell Immobilisation in Repeated Batch Fermentation System.
Sangkaran Pannerchelvan, Faris Nulhaqim Muhamad, Helmi Wasoh, Mohd Shamzi Mohamed, Fadzlie Wong Faizal Wong, Rosfarizan Mohamad, Murni Halim
{"title":"Improvement of ɣ-Aminobutyric Acid Production and Cell Viability of Lactiplantibacillus plantarum B7 via Whole-Cell Immobilisation in Repeated Batch Fermentation System.","authors":"Sangkaran Pannerchelvan, Faris Nulhaqim Muhamad, Helmi Wasoh, Mohd Shamzi Mohamed, Fadzlie Wong Faizal Wong, Rosfarizan Mohamad, Murni Halim","doi":"10.1007/s12602-023-10200-4","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-cell immobilisation technology involving ℽ-aminobutyric acid GABA biosynthesis using lactic acid bacteria (LAB) has been extensively studied owing to its numerous benefits over free-living bacteria, including enhanced productivity, improved cell viability, ability to prevent cell lysis and protect cells against bacteriophages and other stressful conditions. Therefore, a novel LAB biocatalyst was developed using various fruit and fruit waste, immobilising a potential probiotic strain, Lactiplantibacillus plantarum B7, via an adsorption method to improve GABA and cell viability. Apple and watermelon rind have been known to be the ideal natural supports for L. plantarum B7 owing to higher GABA and lactic acid production and improved cell viability among the other natural supports tested and selected to be used in repeated batch fermentation (RBF) to improve GABA production and cell viability. In general, immobilisation of L. plantarum B7 on natural support has better GABA and lactic acid production with improved cell viability via RBF compared to free cells. Watermelon rind-supported cells and apple-supported cells could produce nine and eight successful GABA cycles, respectively, within RBF, whereas free cells could only produce up to four cycles. When using watermelon rind-supported cells and apple-supported cells in RBF, the GABA titer may be raised by up to 6.7 (218.480 ± 0.280 g/L) and 6 (195.439 ± 0.042 g/L) times, respectively, in comparison to GABA synthesis by free cells in single batch fermentation (32.65 ± 0.029 g/L). Additionally, natural support immobilised L. plantarum B7 could retain half of its cell viability even after the 12th cycle of RBF, while no cell was observed in control.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1907-1924"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12602-023-10200-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-cell immobilisation technology involving ℽ-aminobutyric acid GABA biosynthesis using lactic acid bacteria (LAB) has been extensively studied owing to its numerous benefits over free-living bacteria, including enhanced productivity, improved cell viability, ability to prevent cell lysis and protect cells against bacteriophages and other stressful conditions. Therefore, a novel LAB biocatalyst was developed using various fruit and fruit waste, immobilising a potential probiotic strain, Lactiplantibacillus plantarum B7, via an adsorption method to improve GABA and cell viability. Apple and watermelon rind have been known to be the ideal natural supports for L. plantarum B7 owing to higher GABA and lactic acid production and improved cell viability among the other natural supports tested and selected to be used in repeated batch fermentation (RBF) to improve GABA production and cell viability. In general, immobilisation of L. plantarum B7 on natural support has better GABA and lactic acid production with improved cell viability via RBF compared to free cells. Watermelon rind-supported cells and apple-supported cells could produce nine and eight successful GABA cycles, respectively, within RBF, whereas free cells could only produce up to four cycles. When using watermelon rind-supported cells and apple-supported cells in RBF, the GABA titer may be raised by up to 6.7 (218.480 ± 0.280 g/L) and 6 (195.439 ± 0.042 g/L) times, respectively, in comparison to GABA synthesis by free cells in single batch fermentation (32.65 ± 0.029 g/L). Additionally, natural support immobilised L. plantarum B7 could retain half of its cell viability even after the 12th cycle of RBF, while no cell was observed in control.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.