Improvement of ɣ-Aminobutyric Acid Production and Cell Viability of Lactiplantibacillus plantarum B7 via Whole-Cell Immobilisation in Repeated Batch Fermentation System.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-12-01 Epub Date: 2023-12-12 DOI:10.1007/s12602-023-10200-4
Sangkaran Pannerchelvan, Faris Nulhaqim Muhamad, Helmi Wasoh, Mohd Shamzi Mohamed, Fadzlie Wong Faizal Wong, Rosfarizan Mohamad, Murni Halim
{"title":"Improvement of ɣ-Aminobutyric Acid Production and Cell Viability of Lactiplantibacillus plantarum B7 via Whole-Cell Immobilisation in Repeated Batch Fermentation System.","authors":"Sangkaran Pannerchelvan, Faris Nulhaqim Muhamad, Helmi Wasoh, Mohd Shamzi Mohamed, Fadzlie Wong Faizal Wong, Rosfarizan Mohamad, Murni Halim","doi":"10.1007/s12602-023-10200-4","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-cell immobilisation technology involving ℽ-aminobutyric acid GABA biosynthesis using lactic acid bacteria (LAB) has been extensively studied owing to its numerous benefits over free-living bacteria, including enhanced productivity, improved cell viability, ability to prevent cell lysis and protect cells against bacteriophages and other stressful conditions. Therefore, a novel LAB biocatalyst was developed using various fruit and fruit waste, immobilising a potential probiotic strain, Lactiplantibacillus plantarum B7, via an adsorption method to improve GABA and cell viability. Apple and watermelon rind have been known to be the ideal natural supports for L. plantarum B7 owing to higher GABA and lactic acid production and improved cell viability among the other natural supports tested and selected to be used in repeated batch fermentation (RBF) to improve GABA production and cell viability. In general, immobilisation of L. plantarum B7 on natural support has better GABA and lactic acid production with improved cell viability via RBF compared to free cells. Watermelon rind-supported cells and apple-supported cells could produce nine and eight successful GABA cycles, respectively, within RBF, whereas free cells could only produce up to four cycles. When using watermelon rind-supported cells and apple-supported cells in RBF, the GABA titer may be raised by up to 6.7 (218.480 ± 0.280 g/L) and 6 (195.439 ± 0.042 g/L) times, respectively, in comparison to GABA synthesis by free cells in single batch fermentation (32.65 ± 0.029 g/L). Additionally, natural support immobilised L. plantarum B7 could retain half of its cell viability even after the 12th cycle of RBF, while no cell was observed in control.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1907-1924"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12602-023-10200-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Whole-cell immobilisation technology involving ℽ-aminobutyric acid GABA biosynthesis using lactic acid bacteria (LAB) has been extensively studied owing to its numerous benefits over free-living bacteria, including enhanced productivity, improved cell viability, ability to prevent cell lysis and protect cells against bacteriophages and other stressful conditions. Therefore, a novel LAB biocatalyst was developed using various fruit and fruit waste, immobilising a potential probiotic strain, Lactiplantibacillus plantarum B7, via an adsorption method to improve GABA and cell viability. Apple and watermelon rind have been known to be the ideal natural supports for L. plantarum B7 owing to higher GABA and lactic acid production and improved cell viability among the other natural supports tested and selected to be used in repeated batch fermentation (RBF) to improve GABA production and cell viability. In general, immobilisation of L. plantarum B7 on natural support has better GABA and lactic acid production with improved cell viability via RBF compared to free cells. Watermelon rind-supported cells and apple-supported cells could produce nine and eight successful GABA cycles, respectively, within RBF, whereas free cells could only produce up to four cycles. When using watermelon rind-supported cells and apple-supported cells in RBF, the GABA titer may be raised by up to 6.7 (218.480 ± 0.280 g/L) and 6 (195.439 ± 0.042 g/L) times, respectively, in comparison to GABA synthesis by free cells in single batch fermentation (32.65 ± 0.029 g/L). Additionally, natural support immobilised L. plantarum B7 could retain half of its cell viability even after the 12th cycle of RBF, while no cell was observed in control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在重复批次发酵系统中通过全细胞固定化提高植物乳杆菌 B7 的ɣ-氨基丁酸产量和细胞活力
利用乳酸菌(LAB)进行ℽ-氨基丁酸 GABA 生物合成的全细胞固定化技术已被广泛研究,因为这种技术与自由生活的细菌相比有许多好处,包括提高生产率、改善细胞活力、防止细胞溶解以及保护细胞免受噬菌体和其他应激条件的影响。因此,我们利用各种水果和水果废料开发了一种新型 LAB 生物催化剂,通过吸附法固定潜在的益生菌株植物乳杆菌 B7,以提高 GABA 和细胞活力。众所周知,苹果皮和西瓜皮是植物乳杆菌 B7 的理想天然支持物,因为它们的 GABA 和乳酸产量较高,细胞活力也有所提高。总体而言,与游离细胞相比,固定在天然支持物上的植物乳杆菌 B7 通过 RBF 可提高 GABA 和乳酸产量,并改善细胞活力。西瓜皮支持的细胞和苹果支持的细胞分别能在 RBF 中成功产生九次和八次 GABA 循环,而游离细胞最多只能产生四次循环。在 RBF 中使用西瓜皮支持细胞和苹果支持细胞时,与单批发酵中游离细胞合成 GABA(32.65 ± 0.029 g/L)相比,GABA 滴度可分别提高 6.7(218.480 ± 0.280 g/L)和 6(195.439 ± 0.042 g/L)倍。此外,即使在 RBF 第 12 个周期后,天然支持固定的植物乳杆菌 B7 仍能保留其一半的细胞活力,而对照组中则没有观察到细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection. Lactiplantibacillus plantarum ELF051 Alleviates Antibiotic-Associated Diarrhea by Regulating Intestinal Inflammation and Gut Microbiota. A Two Bacteriocinogenic Ligilactobacillus Strain Association Inhibits Growth, Adhesion, and Invasion of Salmonella in a Simulated Chicken Gut Environment. Gum Arabic/Chitosan Coacervates for Encapsulation and Protection of Lacticaseibacillus rhamnosus in Storage and Gastrointestinal Environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1