Mastering data visualization with Python: practical tips for researchers.

Soyul Han, Il-Youp Kwak
{"title":"Mastering data visualization with Python: practical tips for researchers.","authors":"Soyul Han, Il-Youp Kwak","doi":"10.7602/jmis.2023.26.4.167","DOIUrl":null,"url":null,"abstract":"<p><p>Big data have revolutionized the way data are processed and used across all fields. In the past, research was primarily conducted with a focus on hypothesis confirmation using sample data. However, in the era of big data, this has shifted to gaining insights from the collected data. Visualizing vast amounts of data to derive insights is crucial. For instance, leveraging big data for visualization can help identify and predict characteristics and patterns related to various infectious diseases. When data are presented in a visual format, patterns within the data become clear, making it easier to comprehend and provide deeper insights. This study aimed to comprehensively discuss data visualization and the various techniques used in the process. It also sought to enable researchers to directly use Python programs for data visualization. By providing practical visualization exercises on GitHub, this study aimed to facilitate their application in research endeavors.</p>","PeriodicalId":73832,"journal":{"name":"Journal of minimally invasive surgery","volume":"26 4","pages":"167-175"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of minimally invasive surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7602/jmis.2023.26.4.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Big data have revolutionized the way data are processed and used across all fields. In the past, research was primarily conducted with a focus on hypothesis confirmation using sample data. However, in the era of big data, this has shifted to gaining insights from the collected data. Visualizing vast amounts of data to derive insights is crucial. For instance, leveraging big data for visualization can help identify and predict characteristics and patterns related to various infectious diseases. When data are presented in a visual format, patterns within the data become clear, making it easier to comprehend and provide deeper insights. This study aimed to comprehensively discuss data visualization and the various techniques used in the process. It also sought to enable researchers to directly use Python programs for data visualization. By providing practical visualization exercises on GitHub, this study aimed to facilitate their application in research endeavors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 Python 掌握数据可视化:研究人员的实用技巧。
大数据彻底改变了所有领域处理和使用数据的方式。过去,研究工作主要是利用样本数据进行假设确认。然而,在大数据时代,这已转变为从收集到的数据中获得洞察力。将海量数据可视化以获得洞察力至关重要。例如,利用大数据进行可视化有助于识别和预测与各种传染病相关的特征和模式。当数据以可视化的形式呈现时,数据中的模式就会变得清晰,从而更容易理解并提供更深入的见解。本研究旨在全面讨论数据可视化和在此过程中使用的各种技术。它还试图让研究人员能够直接使用 Python 程序进行数据可视化。通过在 GitHub 上提供实用的可视化练习,本研究旨在促进其在研究工作中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acute peritonitis caused by a ruptured urachal cyst accompanied by omphalitis in an adult: a case report and literature review. Analyzing the emergence of surgical robotics in Africa: a scoping review of pioneering procedures, platforms utilized, and outcome meta-analysis. Assessment of mechanical bowel preparation prior to nephrectomy in the minimally invasive surgery era: insights from a national database analysis in the United States. Automated machine learning with R: AutoML tools for beginners in clinical research. Is prophylactic abdominal drainage mandatory in laparoscopic hemicolectomy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1