{"title":"Vestibular evoked myogenic potential (VEMP) test-retest reliability in adults.","authors":"Faten S Obeidat, Alia A Alghwiri, Steven L Bell","doi":"10.3233/VES-230029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The technique of measuring ocular vestibular evoked myogenic potentials (oVEMP) in response to Mini-shaker vibration is relatively new, there is a limited normative data to define the presence or absence of a response in the literature.</p><p><strong>Objective: </strong>To determine the test-retest reliability of cervical and ocular VEMPs (cVEMP and oVEMP, respectively) to air-conducted sound (ACS) and bone-conducted vibration (BCV) stimulation and to determine normative ranges for the responses.</p><p><strong>Methods: </strong>Twenty normal-hearing individuals (40 ears) and 20 hearing impaired volunteers with normal balance function (40 ears) were examined in this study. ACS cVEMP and BCV oVEMP (using a Mini-shaker) were recorded from both groups to assess the test-retest reliability and to collect normative VEMP data for P1/N1 latencies and amplitudes from 20 normal hearing individuals. To test reliability, VEMP recordings were repeated within the same session.</p><p><strong>Results: </strong>The test-retest reliability for all the cVEMP parameters showed excellent reliability whereas oVEMP parameters showed between fair and excellent reliability depending on the parameter tested. Normative data for VEMP P1/N1 latencies and amplitudes were established.</p><p><strong>Conclusions: </strong>Normative data and test-retest reliability for BCV oVEMP using the Mini-shaker at 100 Hz were established in our study for the first time in the literature. Responses appear reliable.</p>","PeriodicalId":49960,"journal":{"name":"Journal of Vestibular Research-Equilibrium & Orientation","volume":" ","pages":"39-48"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vestibular Research-Equilibrium & Orientation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/VES-230029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The technique of measuring ocular vestibular evoked myogenic potentials (oVEMP) in response to Mini-shaker vibration is relatively new, there is a limited normative data to define the presence or absence of a response in the literature.
Objective: To determine the test-retest reliability of cervical and ocular VEMPs (cVEMP and oVEMP, respectively) to air-conducted sound (ACS) and bone-conducted vibration (BCV) stimulation and to determine normative ranges for the responses.
Methods: Twenty normal-hearing individuals (40 ears) and 20 hearing impaired volunteers with normal balance function (40 ears) were examined in this study. ACS cVEMP and BCV oVEMP (using a Mini-shaker) were recorded from both groups to assess the test-retest reliability and to collect normative VEMP data for P1/N1 latencies and amplitudes from 20 normal hearing individuals. To test reliability, VEMP recordings were repeated within the same session.
Results: The test-retest reliability for all the cVEMP parameters showed excellent reliability whereas oVEMP parameters showed between fair and excellent reliability depending on the parameter tested. Normative data for VEMP P1/N1 latencies and amplitudes were established.
Conclusions: Normative data and test-retest reliability for BCV oVEMP using the Mini-shaker at 100 Hz were established in our study for the first time in the literature. Responses appear reliable.
期刊介绍:
Journal of Vestibular Research is a peer-reviewed journal that publishes experimental and observational studies, review papers, and theoretical papers based on current knowledge of the vestibular system. Subjects of the studies can include experimental animals, normal humans, and humans with vestibular or other related disorders. Study topics can include the following:
Anatomy of the vestibular system, including vestibulo-ocular, vestibulo-spinal, and vestibulo-autonomic pathways
Balance disorders
Neurochemistry and neuropharmacology of balance, both at the systems and single neuron level
Neurophysiology of balance, including the vestibular, ocular motor, autonomic, and postural control systems
Psychophysics of spatial orientation
Space and motion sickness
Vestibular rehabilitation
Vestibular-related human performance in various environments