Inhibition of endogenous nitric oxide activity impairs the colonic sparing effect of rofecoxib, the cyclooxygenase-2 inhibitor and resveratrol, the preferential cyclooxygenase-1 inhibitor in the course of experimental colitis. Role of oxidative stress biomarkers and proinflammatory cytokines.

IF 2 4区 医学 Q3 PHYSIOLOGY Journal of Physiology and Pharmacology Pub Date : 2023-10-01 Epub Date: 2023-12-06 DOI:10.26402/jpp.2023.5.08
S Kwiecień, D Wojcik-Grzybek, Z Sliwowski, A Targosz, A Chmura, K Magierowska, M Strzalka, U Glowacka, A Ptak-Belowska, M Magierowski, T Brzozowski
{"title":"Inhibition of endogenous nitric oxide activity impairs the colonic sparing effect of rofecoxib, the cyclooxygenase-2 inhibitor and resveratrol, the preferential cyclooxygenase-1 inhibitor in the course of experimental colitis. Role of oxidative stress biomarkers and proinflammatory cytokines.","authors":"S Kwiecień, D Wojcik-Grzybek, Z Sliwowski, A Targosz, A Chmura, K Magierowska, M Strzalka, U Glowacka, A Ptak-Belowska, M Magierowski, T Brzozowski","doi":"10.26402/jpp.2023.5.08","DOIUrl":null,"url":null,"abstract":"<p><p>The gut mucosal barrier plays a key role in the physiology of gastrointestinal (GI) tract, preventing under homeostatic conditions, the epithelial cells of the gastric mucosa from hydrochloric acid and intestinal mucosa from alkaline secretion, food toxins and pathogenic microbiota. Previous studies have documented that blockade of both isoforms of cyclooxygenase (COX): constitutive (COX-1) and inducible (COX-2), as well NO synthase in the stomach exacerbated the gastric damage induced by various ulcerogens, however, such as effects of non-selective and selective inhibition of COX-1, COX-2 and NOS enzymes on colonic damage have been little studied. The supplementation of NO by intragastric (i.g.) treatment with NO-releasing compound NO-aspirin (NO-ASA) or substrate for NO synthase L-arginine ameliorated the damage of upper GI-tract, but whether similar effect can be observed in colonic mucosa associated with the experimental colitis, and if above mentioned compounds can be effective in aggravation or protection of experimental colitis remains less recognized. In this study rats with experimental colitis induced by intrarectal administration of 2,4,6-trinitrobenzosulphonic acid (TNBS) were daily treated for 7 days with: 1) vehicle (i.g.), 2) ASA 40 mg/kg (i.g.), 3) rofecoxib 10 mg/kg (i.g.), 4) resveratrol 10 mg/kg (i.g.), 5) NO-ASA 40 mg/kg (i.g.), 6) L-arginine 200 mg/kg (i.g.) with or without of L-NNA 20 mg/kg (i.p.). The macroscopic and microscopic area of colonic damage was determined planimetrically, the colonic blood flow (CBF) was assessed by Laser flowmetry, and the oxidative stress biomarkers malondialdehyde and 4-hydroxynonenal (MDA+4-HNE), the antioxidative factors superoxide dismutase (SOD) and glutathione (GSH), as well as proinflammatory cytokines in the colonic mucosa (tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β)) were measured. We have documented that administration of TNBS produced gross and microscopic colonic damage and significantly decreased CBF (p<0.05). Treatment with ASA significantly increased the area of colonic damage (p<0.05), an effect accompanied by a significant decrease in the CBF, the significant increment of MDA+4-HNE, and the attenuation of the antioxidative properties in colonic mucosa, documented by a significant decrease of SOD activity and GSH concentration, and elevation of the colonic tissue levels of TNF-α and IL-1β comparing to control Veh-treated TNBS rats. Administration of rofecoxib or resveratrol also significantly increased the colonic damage and significantly decreased the CBF, causing an increase in MDA+4-HNE and mucosal content of TNF-α and IL-1α and a significant decrease of the SOD activity and GSH content (p<0.05), however, these changes were significantly less pronounced as compared with ASA. On the contrary, the treatment with NO-ASA, or L-arginine, significantly diminished the area of colonic lesions, the MDA+4-HNE concentration, attenuated the TNF-α and IL-1β levels, while increasing the CBF, SOD activity and GSH content (p<0.05). The concomitant treatment of L-NNA with rofecoxib or resveratrol reversed an increase in area of colonic damage and accompanying changes in CBF, colonic mucosa TNF-α and IL-1β levels, the MDA+4-HNE concentration, and SOD activity and GSH content comparing to those observed in TNBS rats treated with these COX-inhibitors alone (p<0.05). In contrast, co-treatment with L-NNA and NO-ASA or L-arginine failed to significantly affect the decrease of colonic lesions accompanied by the rise in CBF, the attenuation of MDA+4-HNE concentration, TNF-α and IL-1β levels, SOD activity and GSH content exerted by NO-ASA- or L-arginine treatment of the respective control TNBS-rats without L-NNA administration. These observations suggest that 1) the increase of NO availability either from NO-releasing donors such as NO-ASA or NO precursors such as L-arginine, can inhibit the inflammatory and microvasculature alterations, as well as increase in lipid peroxidation due to the enhanced efficacy of these compounds to increase the antioxidative properties of colonic mucosa, 2) unlike ASA which exacerbated the severity of colitis, the treatment with rofecoxib, the specific 'safer' COX-2 inhibitor or resveratrol, the polyphenolic compound known to act as the dual COX-1 and COX-2 inhibitor, can attenuate the colonic damage during course of TNBS colitis possibly via anti-inflammatory and antioxidative properties, and 3) the blockade of endogenous NO activity by L-NNA which also exacerbated the severity of mucosal damage in colitis, can abolish the sparing effect of rofecoxib and resveratrol indicating the NO bioavailability plays an important role in enhanced efficacy of both specific and dual COX inhibitors to ameliorate the experimental colitis.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":"74 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2023.5.08","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut mucosal barrier plays a key role in the physiology of gastrointestinal (GI) tract, preventing under homeostatic conditions, the epithelial cells of the gastric mucosa from hydrochloric acid and intestinal mucosa from alkaline secretion, food toxins and pathogenic microbiota. Previous studies have documented that blockade of both isoforms of cyclooxygenase (COX): constitutive (COX-1) and inducible (COX-2), as well NO synthase in the stomach exacerbated the gastric damage induced by various ulcerogens, however, such as effects of non-selective and selective inhibition of COX-1, COX-2 and NOS enzymes on colonic damage have been little studied. The supplementation of NO by intragastric (i.g.) treatment with NO-releasing compound NO-aspirin (NO-ASA) or substrate for NO synthase L-arginine ameliorated the damage of upper GI-tract, but whether similar effect can be observed in colonic mucosa associated with the experimental colitis, and if above mentioned compounds can be effective in aggravation or protection of experimental colitis remains less recognized. In this study rats with experimental colitis induced by intrarectal administration of 2,4,6-trinitrobenzosulphonic acid (TNBS) were daily treated for 7 days with: 1) vehicle (i.g.), 2) ASA 40 mg/kg (i.g.), 3) rofecoxib 10 mg/kg (i.g.), 4) resveratrol 10 mg/kg (i.g.), 5) NO-ASA 40 mg/kg (i.g.), 6) L-arginine 200 mg/kg (i.g.) with or without of L-NNA 20 mg/kg (i.p.). The macroscopic and microscopic area of colonic damage was determined planimetrically, the colonic blood flow (CBF) was assessed by Laser flowmetry, and the oxidative stress biomarkers malondialdehyde and 4-hydroxynonenal (MDA+4-HNE), the antioxidative factors superoxide dismutase (SOD) and glutathione (GSH), as well as proinflammatory cytokines in the colonic mucosa (tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β)) were measured. We have documented that administration of TNBS produced gross and microscopic colonic damage and significantly decreased CBF (p<0.05). Treatment with ASA significantly increased the area of colonic damage (p<0.05), an effect accompanied by a significant decrease in the CBF, the significant increment of MDA+4-HNE, and the attenuation of the antioxidative properties in colonic mucosa, documented by a significant decrease of SOD activity and GSH concentration, and elevation of the colonic tissue levels of TNF-α and IL-1β comparing to control Veh-treated TNBS rats. Administration of rofecoxib or resveratrol also significantly increased the colonic damage and significantly decreased the CBF, causing an increase in MDA+4-HNE and mucosal content of TNF-α and IL-1α and a significant decrease of the SOD activity and GSH content (p<0.05), however, these changes were significantly less pronounced as compared with ASA. On the contrary, the treatment with NO-ASA, or L-arginine, significantly diminished the area of colonic lesions, the MDA+4-HNE concentration, attenuated the TNF-α and IL-1β levels, while increasing the CBF, SOD activity and GSH content (p<0.05). The concomitant treatment of L-NNA with rofecoxib or resveratrol reversed an increase in area of colonic damage and accompanying changes in CBF, colonic mucosa TNF-α and IL-1β levels, the MDA+4-HNE concentration, and SOD activity and GSH content comparing to those observed in TNBS rats treated with these COX-inhibitors alone (p<0.05). In contrast, co-treatment with L-NNA and NO-ASA or L-arginine failed to significantly affect the decrease of colonic lesions accompanied by the rise in CBF, the attenuation of MDA+4-HNE concentration, TNF-α and IL-1β levels, SOD activity and GSH content exerted by NO-ASA- or L-arginine treatment of the respective control TNBS-rats without L-NNA administration. These observations suggest that 1) the increase of NO availability either from NO-releasing donors such as NO-ASA or NO precursors such as L-arginine, can inhibit the inflammatory and microvasculature alterations, as well as increase in lipid peroxidation due to the enhanced efficacy of these compounds to increase the antioxidative properties of colonic mucosa, 2) unlike ASA which exacerbated the severity of colitis, the treatment with rofecoxib, the specific 'safer' COX-2 inhibitor or resveratrol, the polyphenolic compound known to act as the dual COX-1 and COX-2 inhibitor, can attenuate the colonic damage during course of TNBS colitis possibly via anti-inflammatory and antioxidative properties, and 3) the blockade of endogenous NO activity by L-NNA which also exacerbated the severity of mucosal damage in colitis, can abolish the sparing effect of rofecoxib and resveratrol indicating the NO bioavailability plays an important role in enhanced efficacy of both specific and dual COX inhibitors to ameliorate the experimental colitis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在实验性结肠炎过程中,抑制内源性一氧化氮活性会损害环氧化酶-2抑制剂罗非昔布和环氧化酶-1优先抑制剂白藜芦醇的结肠疏通作用。氧化应激生物标志物和促炎细胞因子的作用。
肠道粘膜屏障在胃肠道(GI)的生理学中起着关键作用,在平衡状态下,它能防止胃粘膜上皮细胞受到盐酸、肠粘膜上皮细胞受到碱性分泌物、食物毒素和致病微生物群的侵害。以往的研究表明,阻断胃中的环氧化酶(COX)的两种同工酶:组成型(COX-1)和诱导型(COX-2)以及 NO 合酶,会加剧各种溃疡剂诱发的胃损伤,但对 COX-1、COX-2 和 NOS 酶的非选择性和选择性抑制对结肠损伤的影响却研究甚少。通过胃内注射 NO 释放化合物 NO-阿司匹林(NO-ASA)或 NO 合成酶底物 L-精氨酸来补充 NO,可以减轻上消化道损伤,但是否能在与实验性结肠炎相关的结肠粘膜中观察到类似的效果,以及上述化合物是否能有效加重或保护实验性结肠炎,目前仍鲜为人知。在这项研究中,通过直肠内给药 2,4,6-三硝基苯磺酸(TNBS)诱发实验性结肠炎的大鼠每天接受以下治疗,连续 7 天:1)载体(i.g.);2)ASA 40 mg/kg(i.g.);3)罗非昔布 10 mg/kg(i.g.);4)白藜芦醇 10 mg/kg(i.g.);5)NO-ASA 40 mg/kg(i.g.);6)L-精氨酸 200 mg/kg(i.g.),添加或不添加 L-NNA 20 mg/kg(i.p.)。用平面测量法确定结肠损伤的宏观和微观面积,用激光血流测量法评估结肠血流量(CBF),以及氧化应激生物标志物丙二醛和 4-羟基壬烯醛(MDA+4-HNE)、还测量了超氧化物歧化酶(SOD)和谷胱甘肽(GSH)等抗氧化因子以及结肠粘膜中的促炎细胞因子(肿瘤坏死因子α(TNF-α)和白细胞介素-1β(IL-1β))。我们发现,服用 TNBS 会造成结肠大体和显微损伤,并显著降低 CBF(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
22.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.
期刊最新文献
Baicalin alleviates intestinal ischemia-reperfusion injury by regulating ferroptosis mediated by nuclear factor E2-related factor 2/Glutathione peroxidase 4 signaling pathway. Borneol hinders the proliferation and induces apoptosis through the suppression of reactive oxygen species-mediated JAK1 and STAT-3 signaling in human prostate cancer cells. Changes in macular ganglion cell and retinal nerve fiber layer thickness during recovery from infection with the B.1.1.7 variant of SARS-CoV-2 in previously hospitalized patients with COVID-19 bilateral pneumonia. Gynosaponin ameliorates sevoflurane anesthesia-induced cognitive dysfunction and neuronal apoptosis in rats through modulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Maternal hyperglycemia and long-term consequences for human offspring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1