Yao Wei, Bin Yang, Ling Wei, Jun Xue, Yicheng Zhu, Jianchu Li, Mingwei Qin, Shuyang Zhang, Qing Dai, Meng Yang
{"title":"Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network.","authors":"Yao Wei, Bin Yang, Ling Wei, Jun Xue, Yicheng Zhu, Jianchu Li, Mingwei Qin, Shuyang Zhang, Qing Dai, Meng Yang","doi":"10.1055/a-2180-8405","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network.</p><p><strong>Materials and methods: </strong>445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance.</p><p><strong>Results: </strong>The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist's (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation.</p><p><strong>Conclusion: </strong>Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.</p>","PeriodicalId":49400,"journal":{"name":"Ultraschall in Der Medizin","volume":" ","pages":"493-500"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultraschall in Der Medizin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2180-8405","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network.
Materials and methods: 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance.
Results: The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist's (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation.
Conclusion: Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
期刊介绍:
Ultraschall in der Medizin / European Journal of Ultrasound publishes scientific papers and contributions from a variety of disciplines on the diagnostic and therapeutic applications of ultrasound with an emphasis on clinical application. Technical papers with a physiological theme as well as the interaction between ultrasound and biological systems might also occasionally be considered for peer review and publication, provided that the translational relevance is high and the link with clinical applications is tight. The editors and the publishers reserve the right to publish selected articles online only. Authors are welcome to submit supplementary video material. Letters and comments are also accepted, promoting a vivid exchange of opinions and scientific discussions.