Blob-B-Gone: a lightweight framework for removing blob artifacts from 2D/3D MINFLUX single-particle tracking data.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in bioinformatics Pub Date : 2023-11-22 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1268899
Bela T L Vogler, Francesco Reina, Christian Eggeling
{"title":"Blob-B-Gone: a lightweight framework for removing blob artifacts from 2D/3D MINFLUX single-particle tracking data.","authors":"Bela T L Vogler, Francesco Reina, Christian Eggeling","doi":"10.3389/fbinf.2023.1268899","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce Blob-B-Gone, a lightweight framework to computationally differentiate and eventually remove dense isotropic localization accumulations (blobs) caused by artifactually immobilized particles in MINFLUX single-particle tracking (SPT) measurements. This approach uses purely geometrical features extracted from MINFLUX-detected single-particle trajectories, which are treated as point clouds of localizations. Employing <i>k-means++</i> clustering, we perform single-shot separation of the feature space to rapidly extract blobs from the dataset without the need for training. We automatically annotate the resulting sub-sets and, finally, evaluate our results by means of principal component analysis (PCA), highlighting a clear separation in the feature space. We demonstrate our approach using two- and three-dimensional simulations of freely diffusing particles and blob artifacts based on parameters extracted from hand-labeled MINFLUX tracking data of fixed 23-nm bead samples and two-dimensional diffusing quantum dots on model lipid membranes. Applying Blob-B-Gone, we achieve a clear distinction between blob-like and other trajectories, represented in F1 scores of 0.998 (2D) and 1.0 (3D) as well as 0.995 (balanced) and 0.994 (imbalanced). This framework can be straightforwardly applied to similar situations, where discerning between blob and elongated time traces is desirable. Given a number of localizations sufficient to express geometric features, the method can operate on any generic point clouds presented to it, regardless of its origin.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1268899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce Blob-B-Gone, a lightweight framework to computationally differentiate and eventually remove dense isotropic localization accumulations (blobs) caused by artifactually immobilized particles in MINFLUX single-particle tracking (SPT) measurements. This approach uses purely geometrical features extracted from MINFLUX-detected single-particle trajectories, which are treated as point clouds of localizations. Employing k-means++ clustering, we perform single-shot separation of the feature space to rapidly extract blobs from the dataset without the need for training. We automatically annotate the resulting sub-sets and, finally, evaluate our results by means of principal component analysis (PCA), highlighting a clear separation in the feature space. We demonstrate our approach using two- and three-dimensional simulations of freely diffusing particles and blob artifacts based on parameters extracted from hand-labeled MINFLUX tracking data of fixed 23-nm bead samples and two-dimensional diffusing quantum dots on model lipid membranes. Applying Blob-B-Gone, we achieve a clear distinction between blob-like and other trajectories, represented in F1 scores of 0.998 (2D) and 1.0 (3D) as well as 0.995 (balanced) and 0.994 (imbalanced). This framework can be straightforwardly applied to similar situations, where discerning between blob and elongated time traces is desirable. Given a number of localizations sufficient to express geometric features, the method can operate on any generic point clouds presented to it, regardless of its origin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blob-B-Gone:从二维/三维 MINFLUX 单粒子跟踪数据中去除 Blob 伪影的轻量级框架。
在本研究中,我们介绍了 Blob-B-Gone,这是一个轻量级框架,用于计算区分并最终移除 MINFLUX 单粒子跟踪(SPT)测量中由人为固定粒子造成的致密各向同性定位堆积(blob)。这种方法使用从 MINFLUX 检测到的单粒子轨迹中提取的纯几何特征,这些轨迹被视为定位的点云。我们采用 k-means++ 聚类,对特征空间进行单次分离,从而无需训练即可从数据集中快速提取 Blob。我们自动注释生成的子集,最后通过主成分分析(PCA)评估我们的结果,突出了特征空间的明显分离。我们使用二维和三维模拟自由扩散粒子和 Blob 伪影来演示我们的方法,这些粒子和伪影的参数是从固定的 23 纳米珠子样本和模型脂膜上二维扩散量子点的手工标记 MINFLUX 跟踪数据中提取的。通过应用 Blob-B-Gone,我们明确区分了类 Blob 轨迹和其他轨迹,F1 分数分别为 0.998(二维)和 1.0(三维),以及 0.995(平衡)和 0.994(不平衡)。这一框架可直接应用于类似的情况,即需要区分 Blob 和拉长的时间轨迹。由于定位的数量足以表达几何特征,因此该方法可用于任何通用点云,无论其来源如何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
The quantum hypercube as a k-mer graph. A review of model evaluation metrics for machine learning in genetics and genomics. Visual analysis of multi-omics data. Molecular docking and molecular dynamic simulation studies to identify potential terpenes against Internalin A protein of Listeria monocytogenes. PhIP-Seq: methods, applications and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1