{"title":"Acute exposure to diesel particulate matter promotes collective cell migration in thyroid cancer cells.","authors":"Sheena Yi-Hsin Cheng, Shih-Yuan Huang, Shih-Ping Cheng","doi":"10.3389/ftox.2023.1294760","DOIUrl":null,"url":null,"abstract":"<p><p>Several ecological studies suggest that ambient air pollution is associated with the occurrence of thyroid cancer. In this study, we used certified diesel particulate matter as a proxy for fine particulate matter. Human thyroid cancer cell lines 8505C and TPC-1 were incubated with different concentrations of NIST1650b for 5 days and subjected to functional assays. We found that NIST1650b treatment did not affect short-term cell growth but reduced colony formation at high concentrations. Notably, NIST1650b-treated cells showed altered morphology toward cluster coalescence following treatment. Wound healing assays revealed that leading-edge cells formed protruding tips while maintaining cell-cell adhesion, and a significantly higher ratio of wound closure following treatment at 10 μg/mL was seen in both cell lines. A weak stimulatory effect on transwell cell migration was observed in 8505C cells. Taken together, our results suggest that fine particulate matter induced a coherent phenotype accompanied by augmented collective cell migration in thyroid cancer cells.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"5 ","pages":"1294760"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2023.1294760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several ecological studies suggest that ambient air pollution is associated with the occurrence of thyroid cancer. In this study, we used certified diesel particulate matter as a proxy for fine particulate matter. Human thyroid cancer cell lines 8505C and TPC-1 were incubated with different concentrations of NIST1650b for 5 days and subjected to functional assays. We found that NIST1650b treatment did not affect short-term cell growth but reduced colony formation at high concentrations. Notably, NIST1650b-treated cells showed altered morphology toward cluster coalescence following treatment. Wound healing assays revealed that leading-edge cells formed protruding tips while maintaining cell-cell adhesion, and a significantly higher ratio of wound closure following treatment at 10 μg/mL was seen in both cell lines. A weak stimulatory effect on transwell cell migration was observed in 8505C cells. Taken together, our results suggest that fine particulate matter induced a coherent phenotype accompanied by augmented collective cell migration in thyroid cancer cells.