A spatial registration method based on 2D–3D registration for an augmented reality spinal surgery navigation system

Jingqi Zhang, Zhiyong Yang, Shan Jiang, Zeyang Zhou
{"title":"A spatial registration method based on 2D–3D registration for an augmented reality spinal surgery navigation system","authors":"Jingqi Zhang,&nbsp;Zhiyong Yang,&nbsp;Shan Jiang,&nbsp;Zeyang Zhou","doi":"10.1002/rcs.2612","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>In order to provide accurate and reliable image guidance for augmented reality (AR) spinal surgery navigation, a spatial registration method has been proposed.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In the AR spinal surgery navigation system, grayscale-based 2D/3D registration technology has been used to register preoperative computed tomography images with intraoperative X-ray images to complete the spatial registration, and then the fusion of virtual image and real spine has been realised.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In the image registration experiment, the success rate of spine model registration was 90%. In the spinal model verification experiment, the surface registration error of the spinal model ranged from 0.361 to 0.612 mm, and the total average surface registration error was 0.501 mm.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The spatial registration method based on 2D/3D registration technology can be used in AR spinal surgery navigation systems and is highly accurate and minimally invasive.</p>\n </section>\n </div>","PeriodicalId":50311,"journal":{"name":"International Journal of Medical Robotics and Computer Assisted Surgery","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Robotics and Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2612","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

In order to provide accurate and reliable image guidance for augmented reality (AR) spinal surgery navigation, a spatial registration method has been proposed.

Methods

In the AR spinal surgery navigation system, grayscale-based 2D/3D registration technology has been used to register preoperative computed tomography images with intraoperative X-ray images to complete the spatial registration, and then the fusion of virtual image and real spine has been realised.

Results

In the image registration experiment, the success rate of spine model registration was 90%. In the spinal model verification experiment, the surface registration error of the spinal model ranged from 0.361 to 0.612 mm, and the total average surface registration error was 0.501 mm.

Conclusion

The spatial registration method based on 2D/3D registration technology can be used in AR spinal surgery navigation systems and is highly accurate and minimally invasive.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强现实脊柱手术导航系统的基于 2D-3D 注册的空间注册方法。
背景:为了给增强现实(AR)脊柱手术导航提供准确可靠的图像引导,有人提出了一种空间配准方法:方法:在增强现实脊柱手术导航系统中,采用基于灰度的二维/三维配准技术,将术前计算机断层扫描图像与术中X光图像进行配准,完成空间配准,然后实现虚拟图像与真实脊柱的融合:结果:在图像配准实验中,脊柱模型配准的成功率为 90%。在脊柱模型验证实验中,脊柱模型的表面配准误差在 0.361 至 0.612 毫米之间,总平均表面配准误差为 0.501 毫米:结论:基于二维/三维配准技术的空间配准方法可用于 AR 脊柱手术导航系统,具有高精度和微创的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
12.00%
发文量
131
审稿时长
6-12 weeks
期刊介绍: The International Journal of Medical Robotics and Computer Assisted Surgery provides a cross-disciplinary platform for presenting the latest developments in robotics and computer assisted technologies for medical applications. The journal publishes cutting-edge papers and expert reviews, complemented by commentaries, correspondence and conference highlights that stimulate discussion and exchange of ideas. Areas of interest include robotic surgery aids and systems, operative planning tools, medical imaging and visualisation, simulation and navigation, virtual reality, intuitive command and control systems, haptics and sensor technologies. In addition to research and surgical planning studies, the journal welcomes papers detailing clinical trials and applications of computer-assisted workflows and robotic systems in neurosurgery, urology, paediatric, orthopaedic, craniofacial, cardiovascular, thoraco-abdominal, musculoskeletal and visceral surgery. Articles providing critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies, commenting on ease of use, or addressing surgical education and training issues are also encouraged. The journal aims to foster a community that encompasses medical practitioners, researchers, and engineers and computer scientists developing robotic systems and computational tools in academic and commercial environments, with the intention of promoting and developing these exciting areas of medical technology.
期刊最新文献
A Dual-Mode Robot-Assisted Plate Implantation Method for Femoral Shaft Fracture Automated Non-Supervised Eye Disorder Screening System Using Virtual Reality Path Planning for Multiple Targets for Cannula Flexible Needle With Variable-Curvature Trajectories Multi-Objective Safety-Enhanced Path Planning for the Anterior Part of a Flexible Ureteroscope in Robot-Assisted Surgery Validation of an Augmented Reality Based Functional Method to Determine and Render the Hip Rotation Centre During Total Hip Arthroplasty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1