The deep neural network solver for B-spline approximation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-12-19 DOI:10.1016/j.cad.2023.103668
Zepeng Wen , Jiaqi Luo , Hongmei Kang
{"title":"The deep neural network solver for B-spline approximation","authors":"Zepeng Wen ,&nbsp;Jiaqi Luo ,&nbsp;Hongmei Kang","doi":"10.1016/j.cad.2023.103668","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper introduces a novel unsupervised deep learning<span> approach to address the knot placement problem in the field of B-spline approximation, called </span></span>deep neural network<span><span> solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization<span> problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality </span></span>synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523002002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel unsupervised deep learning approach to address the knot placement problem in the field of B-spline approximation, called deep neural network solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 B-样条逼近的深度神经网络求解器
本文介绍了一种新颖的无监督深度学习方法,用于解决 B-样条近似领域中的节点位置问题,即深度神经网络求解器(DNN-Solvers)。在给定离散点的情况下,DNN 充当解算器,计算固定节点数情况下的节点位置。输入可以是任何初始结点,输出则是理想的结点。损失函数基于近似误差。DNN 求解器将低维绳结位置问题(非凸非线性优化问题)转换为在高维空间内搜索合适的网络参数。由于过度参数化的特性,DNN-求解器不易陷入局部最小值,对初始结点也很稳健。此外,DNN-Solvers 的无监督学习模式使我们无需构建高质量的带标签合成数据集。数值实验证明,在节点数量适当的前提下,DNN求解器的近似结果和效率都非常出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning. Evaluation of the potential of achachairu peel (Garcinia humilis) for the fortification of cereal-based foods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1