A tail index estimation for long memory processes

Pub Date : 2023-12-20 DOI:10.1007/s00184-023-00938-w
Xiao Wang, Lihong Wang
{"title":"A tail index estimation for long memory processes","authors":"Xiao Wang, Lihong Wang","doi":"10.1007/s00184-023-00938-w","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a least squares regression estimation of the tail index for long memory processes where the innovations are <span>\\(\\alpha \\)</span>-stable random sequences. The estimate is based on the property of the characteristic function of the process near the origin. The asymptotics of the estimator are obtained by choosing suitable regression samples with the help of the properties of the <span>\\(\\alpha \\)</span>-stable distribution. The numerical simulation and an empirical analysis of financial market data are conducted to assess the finite sample performance of the proposed estimator.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00938-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a least squares regression estimation of the tail index for long memory processes where the innovations are \(\alpha \)-stable random sequences. The estimate is based on the property of the characteristic function of the process near the origin. The asymptotics of the estimator are obtained by choosing suitable regression samples with the help of the properties of the \(\alpha \)-stable distribution. The numerical simulation and an empirical analysis of financial market data are conducted to assess the finite sample performance of the proposed estimator.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
长记忆过程的尾部指数估算
本文对创新为 \(α \)-稳定随机序列的长记忆过程的尾部指数进行了最小二乘回归估计。该估计基于原点附近过程特征函数的性质。在 \(\α \)-稳定分布性质的帮助下,通过选择合适的回归样本得到了估计器的渐近线。对金融市场数据进行了数值模拟和实证分析,以评估所提出的估计器的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1