Annelise A Madison, Christin E Burd, Rebecca Andridge, Stephanie J Wilson, Michael T Bailey, Martha Belury, Daniel J Spakowicz, William Malarkey, Janice K Kiecolt-Glaser
{"title":"Gut Microbiota Richness and Diversity Track with T Cell Aging in Healthy Adults","authors":"Annelise A Madison, Christin E Burd, Rebecca Andridge, Stephanie J Wilson, Michael T Bailey, Martha Belury, Daniel J Spakowicz, William Malarkey, Janice K Kiecolt-Glaser","doi":"10.1093/gerona/glad276","DOIUrl":null,"url":null,"abstract":"Background This study examined how gut microbiota diversity and richness relate to T cell aging among 96 healthy adults of all ages. It also explored whether these links differed throughout the lifespan. Methods Peripheral blood was obtained from 96 study participants (N=96, aged 21-72) to assess mRNA markers of T cell aging (p16ink4a, p14ARF, B3gat1, Klrg1) and DNA methylation. T cell aging mRNA markers were combined into an aging index and the Horvath epigenetic clock algorithm was used to calculate epigenetic age based on DNA methylation status of over 500 loci. Participants also collected a stool sample from which the V4 region of the 16S rRNA gene was sequenced to derive the Shannon and Simpson diversity indices, and the total count of observed operational taxonomic units (richness). Models controlled for BMI, comorbidities, sex, dietary quality, smoking status, physical activity, and sleep quality. Results Lower microbiota richness was associated with higher T cell age based on mRNA markers, but when probing the region of significance, this relationship was only significant among adults 45 years and older (p=.03). Lower Shannon diversity (p=.05) and richness (p=.07) marginally correlated with higher epigenetic age (i.e., greater T cell DNA methylation). Conclusion Gut microbiota complexity may correspond with the rate of T cell aging, especially in mid-to-late life. These results suggest an interplay between the gut microbiome and immunological aging that warrants further experimental work.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glad276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background This study examined how gut microbiota diversity and richness relate to T cell aging among 96 healthy adults of all ages. It also explored whether these links differed throughout the lifespan. Methods Peripheral blood was obtained from 96 study participants (N=96, aged 21-72) to assess mRNA markers of T cell aging (p16ink4a, p14ARF, B3gat1, Klrg1) and DNA methylation. T cell aging mRNA markers were combined into an aging index and the Horvath epigenetic clock algorithm was used to calculate epigenetic age based on DNA methylation status of over 500 loci. Participants also collected a stool sample from which the V4 region of the 16S rRNA gene was sequenced to derive the Shannon and Simpson diversity indices, and the total count of observed operational taxonomic units (richness). Models controlled for BMI, comorbidities, sex, dietary quality, smoking status, physical activity, and sleep quality. Results Lower microbiota richness was associated with higher T cell age based on mRNA markers, but when probing the region of significance, this relationship was only significant among adults 45 years and older (p=.03). Lower Shannon diversity (p=.05) and richness (p=.07) marginally correlated with higher epigenetic age (i.e., greater T cell DNA methylation). Conclusion Gut microbiota complexity may correspond with the rate of T cell aging, especially in mid-to-late life. These results suggest an interplay between the gut microbiome and immunological aging that warrants further experimental work.