Local region-learning modules for point cloud classification

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Vision and Applications Pub Date : 2023-12-21 DOI:10.1007/s00138-023-01495-y
Kaya Turgut, Helin Dutagaci
{"title":"Local region-learning modules for point cloud classification","authors":"Kaya Turgut, Helin Dutagaci","doi":"10.1007/s00138-023-01495-y","DOIUrl":null,"url":null,"abstract":"<p>Data organization via forming local regions is an integral part of deep learning networks that process 3D point clouds in a hierarchical manner. At each level, the point cloud is sampled to extract representative points and these points are used to be centers of local regions. The organization of local regions is of considerable importance since it determines the location and size of the receptive field at a particular layer of feature aggregation. In this paper, we present two local region-learning modules: Center Shift Module to infer the appropriate shift for each center point, and Radius Update Module to alter the radius of each local region. The parameters of the modules are learned through optimizing the loss associated with the particular task within an end-to-end network. We present alternatives for these modules through various ways of modeling the interactions of the features and locations of 3D points in the point cloud. We integrated both modules independently and together to the PointNet++ and PointCNN object classification architectures, and demonstrated that the modules contributed to a significant increase in classification accuracy for the ScanObjectNN data set consisting of scans of real-world objects. Our further experiments on ShapeNet data set showed that the modules are also effective on 3D CAD models.\n</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"307 5 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-023-01495-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Data organization via forming local regions is an integral part of deep learning networks that process 3D point clouds in a hierarchical manner. At each level, the point cloud is sampled to extract representative points and these points are used to be centers of local regions. The organization of local regions is of considerable importance since it determines the location and size of the receptive field at a particular layer of feature aggregation. In this paper, we present two local region-learning modules: Center Shift Module to infer the appropriate shift for each center point, and Radius Update Module to alter the radius of each local region. The parameters of the modules are learned through optimizing the loss associated with the particular task within an end-to-end network. We present alternatives for these modules through various ways of modeling the interactions of the features and locations of 3D points in the point cloud. We integrated both modules independently and together to the PointNet++ and PointCNN object classification architectures, and demonstrated that the modules contributed to a significant increase in classification accuracy for the ScanObjectNN data set consisting of scans of real-world objects. Our further experiments on ShapeNet data set showed that the modules are also effective on 3D CAD models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于点云分类的局部区域学习模块
通过形成局部区域来组织数据是深度学习网络不可分割的一部分,深度学习网络以分层方式处理三维点云。在每个层次上,点云都要进行采样以提取代表性点,并将这些点用作局部区域的中心。局部区域的组织相当重要,因为它决定了特定特征聚合层的感受野的位置和大小。本文提出了两个局部区域学习模块:中心偏移模块用于推断每个中心点的适当偏移,半径更新模块用于改变每个局部区域的半径。这些模块的参数是通过优化端到端网络中与特定任务相关的损失来学习的。我们通过对点云中三维点的特征和位置的相互作用进行建模的各种方法,提出了这些模块的替代方案。我们在 PointNet++ 和 PointCNN 物体分类架构中单独或共同集成了这两个模块,并证明了这些模块有助于显著提高由真实世界物体扫描组成的 ScanObjectNN 数据集的分类准确性。我们在 ShapeNet 数据集上的进一步实验表明,这些模块对 3D CAD 模型也同样有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
期刊最新文献
A novel key point based ROI segmentation and image captioning using guidance information Specular Surface Detection with Deep Static Specular Flow and Highlight Removing cloud shadows from ground-based solar imagery Underwater image object detection based on multi-scale feature fusion Object Recognition Consistency in Regression for Active Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1