{"title":"Just a matter of size? Evaluating allometry and intersexual heterometry in Pagurus bernhardus using ratios and indices (Decapoda, Anomura)","authors":"Michel SCHMIDT, Ines MARTIN, Roland R. MELZER","doi":"10.1111/1749-4877.12794","DOIUrl":null,"url":null,"abstract":"<p>Heterochely denotes the presence of dissimilarly sized chelipeds on opposite sides of the body, a prevalent occurrence in diverse crustaceans. Conversely, heterometry pertains to the quantifiable disparities in size between these chelipeds. Both chelipeds hold pivotal roles in activities such as foraging, mating, and defense. Consequently, individuals of both genders in heterochelic species exhibit this morphological pattern. Previous studies have identified sexual dimorphism in cheliped size, with males displaying larger major chelipeds compared to females, albeit solely relying on propodus length as a size proxy and focusing solely on the major cheliped. In our study, we meticulously examined 190 specimens of the common European hermit crab <i>Pagurus bernhardus</i> from two collections. We sought to elucidate allometric relationships and assess whether heterometry exhibited sex-based differences when adjusting for body size by using ratios. Our findings revealed that male chelipeds displayed hyperallometric growth relative to females, and all three calculated heterometry indices exhibited significant disparities between the sexes. Consequently, male specimens exhibited larger major and minor chelipeds, even when theoretically matched for body size with females. This phenomenon may be attributed, among other factors, to male–male contests. Should indirect mate selection favor males with larger chelipeds in proportion to their body size, this dynamic could potentiate sexual selection in their favor.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1749-4877.12794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1749-4877.12794","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterochely denotes the presence of dissimilarly sized chelipeds on opposite sides of the body, a prevalent occurrence in diverse crustaceans. Conversely, heterometry pertains to the quantifiable disparities in size between these chelipeds. Both chelipeds hold pivotal roles in activities such as foraging, mating, and defense. Consequently, individuals of both genders in heterochelic species exhibit this morphological pattern. Previous studies have identified sexual dimorphism in cheliped size, with males displaying larger major chelipeds compared to females, albeit solely relying on propodus length as a size proxy and focusing solely on the major cheliped. In our study, we meticulously examined 190 specimens of the common European hermit crab Pagurus bernhardus from two collections. We sought to elucidate allometric relationships and assess whether heterometry exhibited sex-based differences when adjusting for body size by using ratios. Our findings revealed that male chelipeds displayed hyperallometric growth relative to females, and all three calculated heterometry indices exhibited significant disparities between the sexes. Consequently, male specimens exhibited larger major and minor chelipeds, even when theoretically matched for body size with females. This phenomenon may be attributed, among other factors, to male–male contests. Should indirect mate selection favor males with larger chelipeds in proportion to their body size, this dynamic could potentiate sexual selection in their favor.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations