{"title":"Passenger flow forecast of tourist attraction based on MACBL in LBS big data environment","authors":"Qili Tang, Li Yang, Li Pan","doi":"10.1515/geo-2022-0577","DOIUrl":null,"url":null,"abstract":"The existing scenic spot passenger flow prediction models have poor prediction accuracy and inadequate feature extraction ability. To address these issues, a multi-attentional convolutional bidirectional long short-term memory (MACBL)-based method for predicting tourist flow in tourist scenic locations in a location-based services big data environment is proposed in this study. First, a convolutional neural network is employed to identify local features and reduce the dimension of the input data. Then, a bidirectional long short-term memory network is utilized to extract time-series information. Second, the multi-head attention mechanism is employed to parallelize the input data and assign weights to the feature data, which deepens the extraction of important feature information. Next, the dropout layer is used to avoid the overfitting of the model. Finally, three layers of the above network are stacked to form a deep conformity network and output the passenger flow prediction sequence. In contrast to the state-of-the-art models, the MACBL model has enhanced the root mean square error index by at least 2.049, 2.926, and 1.338 for prediction steps of 24, 32, and 60 h, respectively. Moreover, it has also enhanced the mean absolute error index by at least 1.352, 1.489, and 0.938, and the mean absolute percentage error index by at least 0.0447, 0.0345, and 0.0379% for the same prediction steps. The experimental results indicate that the MACBL is better than the existing models in evaluating indexes of different granularities, and it is effective in enhancing the forecasting precision of tourist attractions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0577","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The existing scenic spot passenger flow prediction models have poor prediction accuracy and inadequate feature extraction ability. To address these issues, a multi-attentional convolutional bidirectional long short-term memory (MACBL)-based method for predicting tourist flow in tourist scenic locations in a location-based services big data environment is proposed in this study. First, a convolutional neural network is employed to identify local features and reduce the dimension of the input data. Then, a bidirectional long short-term memory network is utilized to extract time-series information. Second, the multi-head attention mechanism is employed to parallelize the input data and assign weights to the feature data, which deepens the extraction of important feature information. Next, the dropout layer is used to avoid the overfitting of the model. Finally, three layers of the above network are stacked to form a deep conformity network and output the passenger flow prediction sequence. In contrast to the state-of-the-art models, the MACBL model has enhanced the root mean square error index by at least 2.049, 2.926, and 1.338 for prediction steps of 24, 32, and 60 h, respectively. Moreover, it has also enhanced the mean absolute error index by at least 1.352, 1.489, and 0.938, and the mean absolute percentage error index by at least 0.0447, 0.0345, and 0.0379% for the same prediction steps. The experimental results indicate that the MACBL is better than the existing models in evaluating indexes of different granularities, and it is effective in enhancing the forecasting precision of tourist attractions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.