Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-12-21 DOI:10.1172/JCI174508
Gui-Lan Chen, Jing-Yi Li, Xin Chen, Jia-Wei Liu, Qian Zhang, Jie-Yu Liu, Jing Wen, Na Wang, Ming Lei, Jun-Peng Wei, Li Yi, Jia-Jia Li, Yu-Peng Ling, He-Qiang Yi, Zhenying Hu, Jingjing Duan, Jin Zhang, Bo Zeng
{"title":"Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion.","authors":"Gui-Lan Chen, Jing-Yi Li, Xin Chen, Jia-Wei Liu, Qian Zhang, Jie-Yu Liu, Jing Wen, Na Wang, Ming Lei, Jun-Peng Wei, Li Yi, Jia-Jia Li, Yu-Peng Ling, He-Qiang Yi, Zhenying Hu, Jingjing Duan, Jin Zhang, Bo Zeng","doi":"10.1172/JCI174508","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI174508","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械敏感通道 TMEM63A 和 TMEM63B 介导肺充气诱导的表面活性物质分泌。
肺表面活性物质是一种脂蛋白复合物,衬于肺泡表面,可降低表面张力并促进吸气。早产儿以及患有呼吸窘迫综合征的儿童和成人经常会出现表面活性物质缺乏症。肺扩张过程中肺泡 2 型上皮细胞(AT2)的机械拉伸是刺激表面活性物质分泌的主要生理因素;然而,目前还不清楚是否存在专门用于这一过程的机械传感器。在这里,我们发现机械敏感通道 TMEM63A 和 TMEM63B 的缺失会导致小鼠因表面活性物质分泌不足而出现肺不张和呼吸衰竭。TMEM63A/B主要定位于片层体的边缘膜,片层体是一种溶酶体相关细胞器,在AT2细胞中储存肺表面活性物质和ATP。在细胞拉伸过程中激活 TMEM63A/B 通道可促进表面活性物质和 ATP 从与质膜融合的片层体中释放出来。释放的 ATP 在 AT2 细胞中诱发 Ca2+ 信号传导,并促进更多片层体的外排融合。我们的研究揭示了TMEM63机械敏感通道的重要生理功能,它使肺部为出生后的第一次呼吸做好准备,并在整个生命过程中维持呼吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. TET3-overexpressing macrophages promote endometriosis. Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells. Accumulation of Epstein-Barr virus-induced cross-reactive immune responses is associated with multiple sclerosis. Activation of STAT3-mediated ciliated cell survival protects against severe infection by respiratory syncytial virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1