Chuntian Cai, Ahmed Adel Ali Youssef, Poorva H Joshi, Corinne Varner, Narendar Dudhipala, Soumyajit Majumdar
{"title":"Improved Topical Ophthalmic Natamycin Suspension for the Treatment of Fungal Keratitis.","authors":"Chuntian Cai, Ahmed Adel Ali Youssef, Poorva H Joshi, Corinne Varner, Narendar Dudhipala, Soumyajit Majumdar","doi":"10.1089/jop.2023.0092","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> Natamycin (NT) is used as a first-line antifungal prescription in the treatment of fungal keratitis (FK) and is commercially available as a 5% w/v ophthalmic suspension. NT shows poor water solubility and light sensitivity. Thus, the present investigation is aimed to enhance the fraction of NT in solution in the commercial formulation by adding cyclodextrins (CDs), thereby improving the delivery of the drug into deeper ocular tissues. <b><i>Methods:</i></b> The solubility of NT in different CDs, the impact of ultraviolet (UV) light exposure, stability at 4°C and 25°C, <i>in vitro</i> release, and <i>ex vivo</i> transcorneal permeation studies were performed. <b><i>Results:</i></b> NT exhibited the highest solubility (66-fold) in randomly methylated-β-cyclodextrin (RM-βCD) with hydroxypropyl-βCD (HP-βCD) showing the next highest solubility (54-fold) increase in comparison to market formulation Natacyn<sup>®</sup> as control. The stability of NT-CD solutions was monitored for 2 months (last-time point) at both storage conditions. The degradation profile of NT in NT-RM-βCD and NT-HP-βCD solutions under UV-light exposure followed first-order kinetics exhibiting half-lives of 1.2 h and 1.4 h, respectively, an almost 3-fold increase over the control solutions. <i>In vitro</i> release/diffusion studies revealed that suspensions containing RM-βCD and HP-βCD increased transmembrane flux significantly (3.1-fold) compared to the control group. The transcorneal permeability of NT from NT-RM-βCD suspension exhibited an 8.5-fold (<i>P</i> < 0.05) improvement compared to Natacyn eyedrops. Furthermore, the addition of RM-βCD to NT suspension increases the solubilized fraction of NT and enhances transcorneal permeability. <b><i>Conclusion:</i></b> Therefore, NT-RM-βCD formulations could potentially lead to a decreased frequency of administration and significantly improved therapeutic outcomes in FK treatment.</p>","PeriodicalId":16689,"journal":{"name":"Journal of Ocular Pharmacology and Therapeutics","volume":" ","pages":"67-77"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocular Pharmacology and Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jop.2023.0092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Natamycin (NT) is used as a first-line antifungal prescription in the treatment of fungal keratitis (FK) and is commercially available as a 5% w/v ophthalmic suspension. NT shows poor water solubility and light sensitivity. Thus, the present investigation is aimed to enhance the fraction of NT in solution in the commercial formulation by adding cyclodextrins (CDs), thereby improving the delivery of the drug into deeper ocular tissues. Methods: The solubility of NT in different CDs, the impact of ultraviolet (UV) light exposure, stability at 4°C and 25°C, in vitro release, and ex vivo transcorneal permeation studies were performed. Results: NT exhibited the highest solubility (66-fold) in randomly methylated-β-cyclodextrin (RM-βCD) with hydroxypropyl-βCD (HP-βCD) showing the next highest solubility (54-fold) increase in comparison to market formulation Natacyn® as control. The stability of NT-CD solutions was monitored for 2 months (last-time point) at both storage conditions. The degradation profile of NT in NT-RM-βCD and NT-HP-βCD solutions under UV-light exposure followed first-order kinetics exhibiting half-lives of 1.2 h and 1.4 h, respectively, an almost 3-fold increase over the control solutions. In vitro release/diffusion studies revealed that suspensions containing RM-βCD and HP-βCD increased transmembrane flux significantly (3.1-fold) compared to the control group. The transcorneal permeability of NT from NT-RM-βCD suspension exhibited an 8.5-fold (P < 0.05) improvement compared to Natacyn eyedrops. Furthermore, the addition of RM-βCD to NT suspension increases the solubilized fraction of NT and enhances transcorneal permeability. Conclusion: Therefore, NT-RM-βCD formulations could potentially lead to a decreased frequency of administration and significantly improved therapeutic outcomes in FK treatment.
期刊介绍:
Journal of Ocular Pharmacology and Therapeutics is the only peer-reviewed journal that combines the fields of ophthalmology and pharmacology to enable optimal treatment and prevention of ocular diseases and disorders. The Journal delivers the latest discoveries in the pharmacokinetics and pharmacodynamics of therapeutics for the treatment of ophthalmic disorders.
Journal of Ocular Pharmacology and Therapeutics coverage includes:
Glaucoma
Cataracts
Retinal degeneration
Ocular infection, trauma, and toxicology
Ocular drug delivery and biotransformation
Ocular pharmacotherapy/clinical trials
Ocular inflammatory and immune disorders
Gene and cell-based therapies
Ocular metabolic disorders
Ocular ischemia and blood flow
Proliferative disorders of the eye
Eyes on Drug Discovery - written by Gary D. Novack, PhD, featuring the latest updates on drug and device pipeline developments as well as policy/regulatory changes by the FDA.