AI segmentation as a quality improvement tool in radiotherapy planning for breast cancer

S Warren, N Richmond, A Wowk, M Wilkinson, K Wright
{"title":"AI segmentation as a quality improvement tool in radiotherapy planning for breast cancer","authors":"S Warren,&nbsp;N Richmond,&nbsp;A Wowk,&nbsp;M Wilkinson,&nbsp;K Wright","doi":"10.1016/j.ipemt.2023.100020","DOIUrl":null,"url":null,"abstract":"<div><p>AI segmentation has been recently introduced in the local department for delineation of targets and organs-at-risk (OAR) for a wide range of tumour sites. For breast radiotherapy, AI segmentation can provide target delineation (breast and lymph nodes) and required OAR, and this has enabled a stepwise series of improvements to the local planning technique.</p><p>Clinician feedback deemed 67 - 89 % of nodal target volumes required no edits or only minor edits, so AI breast and lymph nodes volumes were first used to guide tangent and supraclavicular field placement, instead of a bony-anatomy based technique.</p><p>Next, evolution from anatomical field-placement to true inverse optimised planning was introduced using AI to create the required target volumes. For internal mammary node (IMN) treatments, the previous 3-field technique prohibited Deep Inspiration breath-hold (DIBH), due to the couch rotation used to match field edges. The roll-out of VMAT (volumetric-modulated arc therapy) with DIBH enabled by AI therefore resulted in a dose reduction to ipsi-lateral lung, and in mean heart dose compared to the old 3-field technique. Median time from CT scan to VMAT IMN plan approval reduced from 12 days (with manual contouring) to 7 days using reviewed and edited AI-generated volumes.</p><p>Consistent, high-quality contours for 9 OAR and breast PTVs for all patients facilitates comparison with NHS-E scorecards as a benchmark for plan quality. Workflows have been simplified, with significant time-savings. DIBH radiotherapy is now available to more patients, further improving dose sparing for heart and lung.</p></div>","PeriodicalId":73507,"journal":{"name":"IPEM-translation","volume":"6 ","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667258823000055/pdfft?md5=b38d4145cf0f2d50c8c5a37a714813ad&pid=1-s2.0-S2667258823000055-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPEM-translation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667258823000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AI segmentation has been recently introduced in the local department for delineation of targets and organs-at-risk (OAR) for a wide range of tumour sites. For breast radiotherapy, AI segmentation can provide target delineation (breast and lymph nodes) and required OAR, and this has enabled a stepwise series of improvements to the local planning technique.

Clinician feedback deemed 67 - 89 % of nodal target volumes required no edits or only minor edits, so AI breast and lymph nodes volumes were first used to guide tangent and supraclavicular field placement, instead of a bony-anatomy based technique.

Next, evolution from anatomical field-placement to true inverse optimised planning was introduced using AI to create the required target volumes. For internal mammary node (IMN) treatments, the previous 3-field technique prohibited Deep Inspiration breath-hold (DIBH), due to the couch rotation used to match field edges. The roll-out of VMAT (volumetric-modulated arc therapy) with DIBH enabled by AI therefore resulted in a dose reduction to ipsi-lateral lung, and in mean heart dose compared to the old 3-field technique. Median time from CT scan to VMAT IMN plan approval reduced from 12 days (with manual contouring) to 7 days using reviewed and edited AI-generated volumes.

Consistent, high-quality contours for 9 OAR and breast PTVs for all patients facilitates comparison with NHS-E scorecards as a benchmark for plan quality. Workflows have been simplified, with significant time-savings. DIBH radiotherapy is now available to more patients, further improving dose sparing for heart and lung.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将人工智能分割作为提高乳腺癌放射治疗规划质量的工具
人工智能分割技术最近已被引入本地部门,用于划定各种肿瘤部位的靶区和危险器官(OAR)。对于乳腺放疗,人工智能分割可提供靶区(乳腺和淋巴结)和所需的高危器官(OAR),从而逐步改进了本地计划技术。临床医生的反馈意见认为,67%-89%的结节靶区体积无需编辑或仅需少量编辑,因此首先使用人工智能乳腺和淋巴结体积来指导切线和锁骨上野外放置,而不是基于骨骼解剖的技术。对于乳腺内结节(IMN)的治疗,以前的三野技术禁止深吸气屏气(DIBH),原因是要使用沙发旋转来匹配野边缘。因此,与旧的 3 场技术相比,通过人工智能启用 DIBH 的 VMAT(容积调制弧治疗)减少了同侧肺的剂量和平均心脏剂量。从 CT 扫描到 VMAT IMN 计划获得批准的中位时间从 12 天(手动轮廓绘制)缩短到 7 天(使用经审查和编辑的人工智能生成的容积)。所有患者的 9 个 OAR 和乳腺 PTV 的轮廓一致,质量高,便于与 NHS-E 评分卡进行比较,作为计划质量的基准。简化了工作流程,大大节省了时间。DIBH 放射治疗现在可用于更多患者,进一步提高了心脏和肺部的剂量节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IPEM-translation
IPEM-translation Medicine and Dentistry (General)
自引率
0.00%
发文量
0
审稿时长
63 days
期刊最新文献
National radiotherapy dosimetry audit in the UK – A vision and roadmap A review of the clinical value of mechanical ventilators and extracorporeal membrane oxygenation (ECMO) equipment Experimental measurement of dosimetric parameters relevant to radioactive needlestick injury The use of solar film elements on a neonate manikin surface to estimate the received output power of neonatal phototherapy lamp systems Role of Coriolis flow measurement technology in validation of model of syringe driver performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1