Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives.

Maria Vittoria Togo, Fabrizio Mastrolorito, Angelica Orfino, Elisabetta Anna Graps, Anna Rita Tondo, Cosimo Damiano Altomare, Fulvio Ciriaco, Daniela Trisciuzzi, Orazio Nicolotti, Nicola Amoroso
{"title":"Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives.","authors":"Maria Vittoria Togo, Fabrizio Mastrolorito, Angelica Orfino, Elisabetta Anna Graps, Anna Rita Tondo, Cosimo Damiano Altomare, Fulvio Ciriaco, Daniela Trisciuzzi, Orazio Nicolotti, Nicola Amoroso","doi":"10.1080/17425255.2023.2298827","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being.</p><p><strong>Areas covered: </strong>This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies.</p><p><strong>Expert opinion: </strong>The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.</p>","PeriodicalId":94005,"journal":{"name":"Expert opinion on drug metabolism & toxicology","volume":" ","pages":"561-577"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug metabolism & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425255.2023.2298827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being.

Areas covered: This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies.

Expert opinion: The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发育毒性与可解释人工智能的结合:最新进展与前景。
导言:人工智能(AI)在预测毒理学中的应用正在迅速增加,特别是旨在开发非检测方法,以有效解决伦理问题并降低经济成本。在此背景下,发育毒性(Dev Tox)是人类健康的一个关键终点,对保障母婴健康尤为重要:本综述概述了现有的发育毒性预测方法,并强调了利用新方法(NAMs)的益处,特别侧重于可解释人工智能(XAI),该方法在构建与国际监管机构建议一致的可靠而透明的模型方面被证明具有很高的效率:专家意见:高质量数据的有限可用性和可靠的 Dev Tox 方法的缺失,使 XAI 成为系统开发可解释和透明模型的一个极具吸引力的途径,这对于科学评估和监管决策都具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transporters and drug secretion into human breast milk. Efficacy, safety and tolerability of drugs for alopecia: a comprehensive review. Evaluating the synergistic use of advanced liver models and AI for the prediction of drug-induced liver injury. A comprehensive review of the efficacy and safety of ertugliflozin. Drug interactions in people with HIV treated with antivirals for other viral illnesses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1