Thibault Deletang, Adnane Noual, B. Bonello, Roman Buisine, Y. Pennec, Bahram Djafari-Rouhani
{"title":"Surface acoustic wave confinement inside uncorrelated distributions of subwavelength scatterers","authors":"Thibault Deletang, Adnane Noual, B. Bonello, Roman Buisine, Y. Pennec, Bahram Djafari-Rouhani","doi":"10.1063/5.0173970","DOIUrl":null,"url":null,"abstract":"We report an experimental study of surface acoustic wave (SAW) localization and propagation in random metasurfaces composed of Al scatters using pump–probe spectroscopy. Thanks to this technique, wideband high frequency acoustic modes are generated, and their dynamical propagation directly from inside of the media with a high (micrometric) spatial resolution is enabled. During SAW propagation, part of the acoustic wavefront energy is trapped within free areas between the scatterers, acting as cavities. The spectral content of the localized modes of a few GHz is found to depend on the shape and size of the cavities but also on the landscape seen by the wave during its propagation before arriving inside them. The experimental results are supported by numerical simulations using the finite element method. This study is the phononic part of a more global research on the co-localization of elastic and optical waves on random metasurfaces, with the main objective of enhancing the photon–phonon interaction. Applications could range from the design of acousto-optic modulators to ultrasensitive sensors.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"86 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0173970","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We report an experimental study of surface acoustic wave (SAW) localization and propagation in random metasurfaces composed of Al scatters using pump–probe spectroscopy. Thanks to this technique, wideband high frequency acoustic modes are generated, and their dynamical propagation directly from inside of the media with a high (micrometric) spatial resolution is enabled. During SAW propagation, part of the acoustic wavefront energy is trapped within free areas between the scatterers, acting as cavities. The spectral content of the localized modes of a few GHz is found to depend on the shape and size of the cavities but also on the landscape seen by the wave during its propagation before arriving inside them. The experimental results are supported by numerical simulations using the finite element method. This study is the phononic part of a more global research on the co-localization of elastic and optical waves on random metasurfaces, with the main objective of enhancing the photon–phonon interaction. Applications could range from the design of acousto-optic modulators to ultrasensitive sensors.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces