{"title":"A Comprehensive Fault-System Inversion Approach: Methods and Application to NSHM23","authors":"K. Milner, E. Field","doi":"10.1785/0120230122","DOIUrl":null,"url":null,"abstract":"\n We present updated inversion-based fault-system solutions for the 2023 update to the National Seismic Hazard Model (NSHM23), standardizing earthquake rate model calculations on crustal faults across the western United States. We build upon the inversion methodology used in the Third Uniform California Earthquake Rupture Forecast (UCERF3) to solve for time-independent rates of earthquakes in an interconnected fault system. The updated model explicitly maps out a wide range of fault recurrence and segmentation behavior (epistemic uncertainty), more completely exploring the solution space of viable models beyond those of UCERF3. We also improve the simulated annealing implementation, greatly increasing computational efficiency (and thus inversion convergence), and introduce an adaptive constraint weight calculation algorithm that helps to mediate between competing constraints. Hazard calculations show that ingredient changes (especially fault and deformation models) are the primary driver of hazard changes between NSHM23 and UCERF3. Updates to the inversion methodology are also consequential near faults in which the slip rate in UCERF3 was poorly fit or was satisfied primarily using large multifault ruptures that are now restricted by explicit b-value and segmentation constraints.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"78 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230122","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
We present updated inversion-based fault-system solutions for the 2023 update to the National Seismic Hazard Model (NSHM23), standardizing earthquake rate model calculations on crustal faults across the western United States. We build upon the inversion methodology used in the Third Uniform California Earthquake Rupture Forecast (UCERF3) to solve for time-independent rates of earthquakes in an interconnected fault system. The updated model explicitly maps out a wide range of fault recurrence and segmentation behavior (epistemic uncertainty), more completely exploring the solution space of viable models beyond those of UCERF3. We also improve the simulated annealing implementation, greatly increasing computational efficiency (and thus inversion convergence), and introduce an adaptive constraint weight calculation algorithm that helps to mediate between competing constraints. Hazard calculations show that ingredient changes (especially fault and deformation models) are the primary driver of hazard changes between NSHM23 and UCERF3. Updates to the inversion methodology are also consequential near faults in which the slip rate in UCERF3 was poorly fit or was satisfied primarily using large multifault ruptures that are now restricted by explicit b-value and segmentation constraints.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.