Andreas Hoffmann, J. Good, M. Gross, M. Krasilnikov, Frank Stephan
{"title":"Towards Implementation of 3D Amplitude Shaping at 515 nm and First Pulseshaping Experiments at PITZ","authors":"Andreas Hoffmann, J. Good, M. Gross, M. Krasilnikov, Frank Stephan","doi":"10.3390/photonics11010006","DOIUrl":null,"url":null,"abstract":"A key issue of X-ray free-electron lasers is the quality of the photoelectron beams generated from a photocathode by laser pulses in the high-gradient RF gun. Controlling the shape of these laser pulses can strongly reduce the transverse emittance of the generated electron bunch. For this purpose, a laser pulseshaper at 515 nm is presented that can be used directly with alkali antimonide photocathodes for photoemission. The first results regarding generation and measurement of flattop and parabolic pulses as well as introduction of modulations for THz generation are presented and show the potential for emittance optimization with 3D ellipsoidal pulses with the proposed pulseshaper. The experiments are carried out for Cs2Te photocathodes, which require second harmonic generation of the shaped pulses and thus allow investigation of pulseshape preservation in nonlinear frequency conversion processes.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"55 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A key issue of X-ray free-electron lasers is the quality of the photoelectron beams generated from a photocathode by laser pulses in the high-gradient RF gun. Controlling the shape of these laser pulses can strongly reduce the transverse emittance of the generated electron bunch. For this purpose, a laser pulseshaper at 515 nm is presented that can be used directly with alkali antimonide photocathodes for photoemission. The first results regarding generation and measurement of flattop and parabolic pulses as well as introduction of modulations for THz generation are presented and show the potential for emittance optimization with 3D ellipsoidal pulses with the proposed pulseshaper. The experiments are carried out for Cs2Te photocathodes, which require second harmonic generation of the shaped pulses and thus allow investigation of pulseshape preservation in nonlinear frequency conversion processes.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.